Machine Learning

Math Essentials Part 2

- Most commonly used continuous probability distribution
- Also known as the normal distribution
- Two parameters define a Gaussian:

In one dimension

In d dimensions

$$N(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

- **x** and μ now *d*-dimensional vectors
 - $-\mu$ gives center of distribution in *d*-dimensional space
- σ^2 replaced by Σ , the $d \ge d$ covariance matrix
 - Σ contains pairwise covariances of every pair of features
 - Diagonal elements of Σ are variances σ^2 of individual features
 - Σ describes distribution's shape and spread

Covariance

 Measures tendency for two variables to deviate from their means in same (or opposite) directions at same time

In two dimensions

In two dimensions

Jeff Howbert

Introduction to Machine Learning

10

Vector projection

Orthogonal projection of y onto x

- Can take place in any space of dimensionality > 2
- Unit vector in direction of x is
 x / || x ||
- Length of projection of y in direction of x is
 || y || · cos(θ)
- Orthogonal projection of y onto x is the vector

 $proj_{x}(y) = x \cdot ||y|| \cdot cos(\theta) / ||x|| =$ $[(x \cdot y) / ||x||^{2}] x \text{ (using dot product alternate form)}$

Linear models

- There are many types of linear models in machine learning.
 - Common in both classification and regression.
 - A linear model consists of a vector β in *d*-dimensional feature space.
 - The vector β attempts to capture the strongest gradient (rate of change) in the output variable, as seen across all training samples.
 - Different linear models optimize β in different ways.
 - A point **x** in feature space is mapped from *d* dimensions to a scalar (1-dimensional) output *z* by projection onto β :

$$z = \alpha + \boldsymbol{\beta} \cdot \mathbf{x} = \alpha + \beta_1 x_1 + \dots + \beta_d x_d$$

Linear models

- There are many types of linear models in machine learning.
 - The projection output z is typically transformed to a final predicted output y by some function f:

$$y = f(z) = f(\alpha + \boldsymbol{\beta} \cdot \mathbf{x}) = f(\alpha + \beta_1 x_1 + \dots + \beta_d x_d)$$

 \bullet example: for logistic regression, *f* is logistic function

• example: for linear regression, f(z) = z

- Models are called linear because they are a linear function of the model vector components $\beta_1, ..., \beta_d$.
- Key feature of all linear models: no matter what *f* is, a constant value of *z* is transformed to a constant value of *y*, so decision boundaries remain linear even after transform.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

14

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

• $\mathbf{w}^T \mathbf{x} = 0$: a line passing through the origin and *orthogonal* to \mathbf{w}

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

- $\mathbf{w}^T \mathbf{x} = 0$: a line passing through the origin and *orthogonal* to \mathbf{w}
- w^Tx + w₀ = 0 shifts the line along w.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

From projection to prediction

Jeff HowbertIntroduction to Machine LearningWinter 201219

Logistic regression in two dimensions

Interpreting the model vector of coefficients

• From MATLAB: B = [13.0460

• $\alpha = B(1), \beta = [\beta_1 \beta_2] = B(2:3)$

- α, β define location and orientation of decision boundary
 - α is distance of decision boundary from origin
 - decision boundary is perpendicular to β
- magnitude of β defines gradient of probabilities between 0 and 1

-1.9024 -0.4047]

Logistic function in *d* dimensions

- What if $\mathbf{x} \in \mathbb{R}^d = [x_1 \dots x_d]^T$?
- $\sigma(w_0 + \mathbf{w}^T \mathbf{x})$ is a scalar function of a scalar variable $w_0 + \mathbf{w}^T \mathbf{x}$.

- the direction of w determines orientation;
- w₀ determines the location;
- $\|\mathbf{w}\|$ determines the slope.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

Introduction to Machine Learning

Decision boundary for logistic regression

$$p(y = 1 | \mathbf{x}) = \sigma(w_0 + \mathbf{w}^T \mathbf{x}) = 1/2 \iff w_0 + \mathbf{w}^T \mathbf{x} = 0$$

• With linear logistic model we get a linear decision boundary.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

22