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Gaussian distribution

e Most commonly used continuous probabillity
distribution

e Also known as the normal distribution
e Two parameters define a Gaussian:

— Mean v location of center
— Variance  ¢? width of curve

Jeff Howbert Introduction to Machine Learning Winter 2012




Gaussian distribution

In one dimension
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Gaussian distribution

In one dimension Causes pdf to decrease as
distance from center

Increases
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Controls width of curve

Normalizing constant:
Insures that distribution
integrates to 1
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Multivariate Gaussian distribution

In d dimensions

1 1 o)
(272')d/2 | Z |1/2 €

N(x|p,X) =

e X and u now d-dimensional vectors
— u gives center of distribution in d-dimensional space

e o2 replaced by X, the d x d covariance matrix
— X contains pairwise covariances of every pair of features

— Diagonal elements of ¥ are variances o2 of individual
features

— X describes distribution’s shape and spread
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Multivariate Gaussian distribution

e Covariance

— Measures tendency for two variables to deviate from
their means in same (or opposite) directions at same
time
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Multivariate Gaussian distribution

probability density

In two dimensions
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Multivariate Gaussian distribution

In two dimensions
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Multivariate Gaussian distribution

In three dimensions

X * sigma;
X + repmat( mu®, 1000, 1 );
scatter3( x( =, 1 ), xC =z, 2 ), xC =z, 3), "-");

X =
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Vector projection

e Orthogonal projection of y onto x
— Can take place in any space of dimensionality > 2

— Unit vector In direction of x Is
X | x|

— Length of projection of y in
direction of X IS

Iy Il - cos(6)

— Orthogonal projection of
y onto X Is the vector

proj,(y) = x-[lyll-cos(8) /][ x|l =
[(X-y)/]||x]|?]X (using dot product alternate form)

proj,(y )
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Linear models

e There are many types of linear models in machine learning.

Common in both classification and regression.

A linear model consists of a vector B in d-dimensional
feature space.

The vector B attempts to capture the strongest gradient
(rate of change) in the output variable, as seen across all
training samples.

Different linear models optimize B in different ways.

A point X In feature space is mapped from d dimensions
to a scalar (1-dimensional) output z by projection onto f3:

z=a+p-x=a+px + -+ L,x,
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Linear models

e There are many types of linear models in machine learning.

— The projection output z is typically transformed to a final
predicted output y by some function f:

y=f(z)=fla+P-x)=fla+Bx + -+ 5,x,)

+ example: for logistic regression, f is logistic function
¢ example: for linear regression, f(z) =z

— Models are called linear because they are a linear
function of the model vector components g, ..., .

— Key feature of all linear models: no matter what f is, a
constant value of z is transformed to a constant value of
Y, SO decision boundaries remain linear even after

transform.
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Geometry of projections

ro A
'~ e w/x = 0: a line passing through
I the origin and orthogonal to w
s o wlx+wy = 0 shifts the line along
Tvel W,
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Wy =
w=_

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Geometry of projections

e w/x = 0: a line passing through

the origin and orthogonal to w

e wlx4wo =0 shifts the line along
W.

g

wnp+w x==0

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Geometry of projections

e wix = 0: a line passing through

the origin and orthogonal to w

e Wl x+wy = 0 shifts the line along
W,

wy +wlix =0

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Geometry of projections
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Geometry of projections
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From projection to prediction

| |
y > 0 | positive margin — class 1
y=20
y <0 R
negative margin — class 0

X

s y(x)
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Logistic regression in two dimensions

Interpreting the model vector of coefficients

e From MATLAB: B = [ 13.0460 -1.9024 -0.4047 ]

e a=B(1),B=[B.B]=B(2:3) o
e a, B define location and orientation m————

1 & Fisher versicolor

of decision boundary 38 A Fisherviginica

— - o Is distance of decision
boundary from origin

— decision boundary is
perpendicular to 3

e magnitude of B defines gradient
of probabilities between 0 and 1

Sepal Width

a5 6 6.5
Sepal Length
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Logistic function in ddimensions

e What if x € R? = (1. .. :rd]T?

T

T

e o(wy+ w x) is a scalar function of a scalar variable wy + w* x.

e the direction of w determines
orientation;

e 1wy determines the location;

e ||w|| determines the slope.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Decision boundary for logistic regression

ply=1|x) = o(wo +wlx) = 1/2 & wo +wlix =0

e With linear logistic model we get a linear decision boundary.
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