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Gaussian distribution

Most commonly used continuous probability 
distributiondistribution

Also known as the normal distributionAlso known as the normal distribution

Two parameters define a Gaussian:Two parameters define a Gaussian:
– Mean μ location of center

Variance 2 idth of c r e– Variance σ2 width of curve
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Gaussian distribution
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Gaussian distribution

In one dimension Causes pdf to decrease as 
distance from center 

increases
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Controls width of curve

Normalizing constant: 
insures that distribution 

i 1
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integrates to 1



Gaussian distribution
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μ = 0   σ2 = 1 μ = 2   σ2 = 1
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μ = 0   σ2 = 5 μ = -2   σ2 = 0.3



Multivariate Gaussian distribution
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x and μ now d-dimensional vectors
– μ gives center of distribution in d-dimensional spaceμ g p

σ2 replaced by Σ, the d x d covariance matrix
– Σ contains pairwise covariances of every pair of featuresp y p
– Diagonal elements of Σ are variances σ2 of individual 

features
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– Σ describes distribution’s shape and spread  



Multivariate Gaussian distribution

Covariance
M t d f t i bl t d i t f– Measures tendency for two variables to deviate from 
their means in same (or opposite) directions at same 
time
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Multivariate Gaussian distribution

In two dimensions
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Multivariate Gaussian distribution

In two dimensions
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Multivariate Gaussian distribution

In three dimensions

rng( 1 );
mu =    [ 2; 1; 1 ];[ ]
sigma = [ 0.25 0.30 0.10;

0.30 1.00 0.70;
0.10 0.70 2.00] ;

x = randn( 1000, 3 );
x = x * sigma;
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x = x + repmat( mu', 1000, 1 );
scatter3( x( :, 1 ), x( :, 2 ), x( :, 3 ), '.' );



Vector projection

Orthogonal projection of y onto x
– Can take place in any space of dimensionality > 2Can take place in any space of dimensionality > 2
– Unit vector in direction of x is

x / || x || y

– Length of projection of y in
direction of x is

|| y || cos(θ ) x
θ|| y || ⋅ cos(θ )

– Orthogonal projection of
y onto x is the vector

x
projx( y )

y
projx( y )   =   x ⋅ || y || ⋅ cos(θ ) / || x ||   =
[ ( x ⋅ y ) / || x ||2 ] x (using dot product alternate form)
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Linear models

There are many types of linear models in machine learning.
– Common in both classification and regression.Common in both classification and regression.
– A linear model consists of a vector β in d-dimensional 

feature space.
– The vector β attempts to capture the strongest gradient 

(rate of change) in the output variable, as seen across all 
training samplestraining samples.

– Different linear models optimize β in different ways.
– A point x in feature space is mapped from d dimensions p p pp

to a scalar (1-dimensional) output z by projection onto β:

dd xxz ββαα +++=⋅+= L11xβ
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dd xxz ββαα ++++ 11xβ



Linear models

There are many types of linear models in machine learning.
– The projection output z is typically transformed to a final 

predicted output y by some function ƒ:

)()()( 11 dd xxffzfy ββαα +++=⋅+== Lxβ
example: for logistic regression, ƒ is logistic function
example: for linear regression, ƒ( z ) = z

M d l ll d li b th li– Models are called linear because they are a linear 
function of the model vector components β1, …, βd.

– Key feature of all linear models: no matter what ƒ is, aKey feature of all linear models: no matter what ƒ is, a 
constant value of z is transformed to a constant value of 
y, so decision boundaries remain linear even after 
transform
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transform.



Geometry of projections

w0 ≡ α
w ≡ βw ≡ β
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slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)



Geometry of projections
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Geometry of projections
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Geometry of projections
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Geometry of projections

margin
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slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)



From projection to prediction

iti i l 1positive margin  → class 1

negative margin  → class 0
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Logistic regression in two dimensions

Interpreting the model vector of coefficients

From MATLAB:  B = [ 13.0460   -1.9024   -0.4047 ]
α = B( 1 ), β = [ β1 β2 ] = B( 2 : 3 )
α β define location and orientationα, β define location and orientation
of decision boundary

– - α is distance of decision
boundary from originboundary from origin

– decision boundary is
perpendicular to β

β

magnitude of β defines gradient
of probabilities between 0 and 1 
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Logistic function in d dimensions

Jeff Howbert Introduction to Machine Learning       Winter 2012               21

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)



Decision boundary for logistic regression
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slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)


