Machine Learning

Math Essentials Part 2

- Most commonly used continuous probability distribution
- \bullet Also known as the normal distribution
- **Two parameters define a Gaussian:**
	- Mean μ location of center Variance– σ^2 width of curve

In one dimension

In *d* **dimensions**

$$
N(\mathbf{x} | \mathbf{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathrm{T}} \Sigma^{-1}(\mathbf{x} - \mathbf{\mu})}
$$

- **x** and μ now *d*-dimensional vectors
	- μ gives center of distribution in *d*-dimensional s pace
- σ ² replaced by Σ, the *d* x *d* covariance matrix
	- Σ contains pairwise covariances of every pair of features
	- $-$ Diagonal elements of Σ are variances σ ² of individual features
	- Σ describes distribution's shape and spread

• Covariance

– Measures tendency for two variables to deviate from their means in same (or opposite) directions at same time

In two dimensions

In two dimensions

Vector projection

• Orthogonal projection of y onto x

- $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ $-$ Can take place in any space of dimensionality ≥ 2
- Unit vector in direction of **x** is **x** / || **^x** || **^y**
- $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ Length of projection of **y** in direction of **x** is
- $\mathcal{L}_{\mathcal{A}}$ Orthogonal projection of **y** onto **^x** is the vector

 $\mathbf{proj}_{\mathbf{x}}(\mathbf{y}) = \mathbf{x} \cdot ||\mathbf{y}|| \cdot \cos(\theta) / ||\mathbf{x}|| =$ $\left[(x \cdot y) / ||x||^2 \right]$ **x** (using dot product alternate form)

Linear models

- There are many types of linear models in machine learning.
	- – $-$ Common in both classification and regression.
	- A linear model consists of a vector β in *d*-dimensional feature space.
	- $-$ The vector β attempts to capture the strongest gradient (rate of change) in the output variable, as seen across all training samples.
	- – $-$ Different linear models optimize β in different ways.
	- $-$ A point **x** in feature space is mapped from *d* dimensions to a scalar (1-dimensional) output *^z* by projection onto β**:**

$$
z = \alpha + \beta \cdot x = \alpha + \beta_1 x_1 + \dots + \beta_d x_d
$$

Linear models

- There are many types of linear models in machine learning.
	- – The projection output *^z* is typically transformed to a final predicted output *y* by some function ƒ:

$$
y = f(z) = f(\alpha + \beta \cdot x) = f(\alpha + \beta_1 x_1 + \dots + \beta_d x_d)
$$

 \bullet example: for logistic regression, f is logistic function

 \bullet example: for linear regression, $f(z) = z$

- – $-$ Models are called linear because they are a linear function of the model vector components β_1, \ldots, β_d .
- – $-$ Key feature of all linear models: no matter what f is, a constant value of *z* is transformed to a constant value of *y*, so decision boundaries remain linear even after transform.

• $\mathbf{w}^T \mathbf{x} = 0$: a line passing through the origin and orthogonal to w

•
$$
\mathbf{w}^T \mathbf{x} + w_0 = 0
$$
 shifts the line along
w.

- $\mathbf{w}^T \mathbf{x} = 0$: a line passing through the origin and orthogonal to w
- $\mathbf{w}^T \mathbf{x} + w_0 = 0$ shifts the line along w.

From projection to prediction

Logistic regression in two dimensions

Interpreting the model vector of coefficients

 \bullet From MATLAB: $B = \{ 13,0460 \} -1,9024 \} -0,4047 \}$

O α = B(1), β = [β₁ β₂] = B(2 : 3)

- z α , β define location and orientation of decision boundary
	- α is distance of decision boundary from origin
	- $-$ decision boundary is perpendicular to β
- magnitude of β defines gradient of probabilities between 0 and 1

Logistic function in d dimensions

- What if $\mathbf{x} \in \mathbb{R}^d = [x_1 \dots x_d]^T$?
- $\sigma(w_0 + \mathbf{w}^T \mathbf{x})$ is a scalar function of a scalar variable $w_0 + \mathbf{w}^T \mathbf{x}$.

- determines direction $of \t w$ $• the$ orientation;
- \bullet w_0 determines the location;
- \bullet $\|\mathbf{w}\|$ determines the slope.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

Jeff Howbert **Introduction to Machine Learning** Minter 2012 21

Decision boundary for logistic regression

$$
p(y = 1 | \mathbf{x}) = \sigma(w_0 + \mathbf{w}^T \mathbf{x}) = 1/2 \Leftrightarrow w_0 + \mathbf{w}^T \mathbf{x} = 0
$$

• With linear logistic model we get a linear decision boundary.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

Introduction to Machine Learning Winter 2012 22