
Machine Learning

Math Essentials

Jeff Howbert Introduction to Machine Learning       Winter 2012               1



Areas of math essential to machine learning

Machine learning is part of both statistics and computer 
science
– Probability
– Statistical inference
– Validation
– Estimates of error, confidence intervals

Li l bLinear algebra
– Hugely useful for compact representation of linear 

transformations on datatransformations on data
– Dimensionality reduction techniques

Optimization theory
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Why worry about the math?

There are lots of easy-to-use machine learning 
packages out there.packages out there.
After this course, you will know how to apply 
several of the most general-purpose algorithms.g p p g

HOWEVERHOWEVER
To get really useful results, you need good 
mathematical intuitions about certain general at e at ca tu t o s about ce ta ge e a
machine learning principles, as well as the inner 
workings of the individual algorithms.
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Why worry about the math?

These intuitions will allow you to:
– Choose the right algorithm(s) for the problemChoose the right algorithm(s) for the problem
– Make good choices on parameter settings, 

validation strategiesg
– Recognize over- or underfitting
– Troubleshoot poor / ambiguous resultsTroubleshoot poor / ambiguous results
– Put appropriate bounds of confidence / 

uncertainty on resultsuncertainty on results
– Do a better job of coding algorithms or 

incorporating them into more complex 
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Notation

a ∈ A set membership: a is member of set A
| B | cardinality: number of items in set B| B | cardinality: number of items in set B
|| v || norm: length of vector v
∑ summation∑ summation
∫ integral
ℜ th t f l bℜ the set of real numbers
ℜn real number space of dimension n

n = 2 : plane or 2-space
n = 3 : 3- (dimensional) space
n > 3 : n-space or hyperspace
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Notation

x, y, z, vector (bold, lower case)
u, v
A, B, X matrix (bold, upper case)
y = f( x ) function (map): assigns unique value iny  f( x ) function (map): assigns unique value in

range of y to each value in domain of x
dy / dx derivative of y with respect to singley y p g

variable x
y = f( x ) function on multiple variables, i.e. ay ( ) p

vector of variables; function in n-space
∂y / ∂xi partial derivative of y with respect to
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The concept of probability

Intuition:
In some process, several outcomes are possible.  
When the process is repeated a large number of 
times, each outcome occurs with a characteristic 
relative frequency or probability If a particularrelative frequency, or probability.  If a particular 
outcome happens more often than another 
outcome we say it is more probableoutcome, we say it is more probable.
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The concept of probability

Arises in two contexts:
In actual repeated experiments.
– Example: You record the color of 1000 cars driving 

by.  57 of them are green.  You estimate the 
probability of a car being green as 57 / 1000 = 0 0057probability of a car being green as 57 / 1000 = 0.0057.

In idealized conceptions of a repeated process.
– Example: You consider the behavior of an unbiasedExample: You consider the behavior of an unbiased 

six-sided die.  The expected probability of rolling a 5 is 
1 / 6 = 0.1667.

– Example: You need a model for how people’s heights 
are distributed.  You choose a normal distribution 
(bell-shaped curve) to represent the expected relative 
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Probability spaces

A probability space is a random process or experiment with 
three components:
– Ω, the set of possible outcomes O

number of possible outcomes = | Ω | = N

F th t f ibl t E– F, the set of possible events E
an event comprises 0 to N outcomes
number of possible events = | F | = 2Nnumber of possible events  | F |  2

– P, the probability distribution
function mapping each outcome and event to real number 

b t 0 d 1 (th b bilit f O E)between 0 and 1 (the probability of O or E)
probability of an event is sum of probabilities of possible 

outcomes in event
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Axioms of probability

1. Non-negativity:
for any event E ∈ F p( E ) ≥ 0for any event E ∈ F, p( E ) ≥ 0

2 All possible outcomes:2. All possible outcomes:
p( Ω ) = 1

3. Additivity of disjoint events:
for all events E, E’ ∈ F where E ∩ E’ = ∅,
p( E U E’ ) = p( E ) + p( E’ )
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Types of probability spaces

Define | Ω | = number of possible outcomes

Discrete space | Ω | is finite
Analysis involves summations ( ∑ )– Analysis involves summations ( ∑ )

C ti | Ω | i i fi itContinuous space | Ω | is infinite
– Analysis involves integrals ( ∫ )
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Example of discrete probability space

Single roll of a six-sided die
– 6 possible outcomes: O = 1, 2, 3, 4, 5, or 6p , , , , ,
– 26 = 64 possible events

example: E = ( O ∈ { 1, 3, 5 } ), i.e. outcome is odd

– If die is fair, then probabilities of outcomes are equal
p( 1 ) = p( 2 ) = p( 3 ) = 
p( 4 ) = p( 5 ) = p( 6 ) = 1 / 6p( 4 )  p( 5 )  p( 6 )  1 / 6

example: probability of event E = ( outcome is odd ) is
p( 1 ) + p( 3 ) + p( 5 ) = 1 / 2

Jeff Howbert Introduction to Machine Learning       Winter 2012               12



Example of discrete probability space

Three consecutive flips of a coin
– 8 possible outcomes: O = HHH, HHT, HTH, HTT, p , , , ,

THH, THT, TTH, TTT
– 28 = 256 possible events

example: E = ( O ∈ { HHT, HTH, THH } ), i.e. exactly two flips 
are heads

example: E = ( O ∈ { THT, TTT } ), i.e. the first and third flips 
are tails

– If coin is fair, then probabilities of outcomes are equal
p( HHH ) = p( HHT ) = p( HTH ) = p( HTT ) =p( HHH )  p( HHT )  p( HTH )  p( HTT ) 
p( THH ) = p( THT ) = p( TTH ) = p( TTT ) = 1 / 8

example: probability of event E = ( exactly two heads ) is
( HHT ) + ( HTH ) + ( THH ) 3 / 8
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Example of continuous probability space

Height of a randomly chosen American male
– Infinite number of possible outcomes: O has someInfinite number of possible outcomes: O has some 

single value in range 2 feet to 8 feet
– Infinite number of possible events

example: E = ( O | O < 5.5 feet ), i.e. individual chosen is less 
than 5.5 feet tall

– Probabilities of outcomes are not equal and areProbabilities of outcomes are not equal, and are 
described by a continuous function, p( O )
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Example of continuous probability space

Height of a randomly chosen American male
– Probabilities of outcomes O are not equal and areProbabilities of outcomes O are not equal, and are 

described by a continuous function, p( O )
– p( O ) is a relative, not an absolute probability

p( O ) for any particular O is zero
∫ p( O ) from O = -∞ to ∞ (i.e. area under curve) is 1
example: p( O = 5’8” ) > p( O = 6’2” )example: p( O = 5 8  ) > p( O = 6 2  )
example: p( O < 5’6” ) = ( ∫ p( O ) from O = -∞ to  5’6” ) ≈ 0.25
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Probability distributions

Discrete: probability mass function (pmf)

example:
sum of two
fair dice

Continuous: probability density function (pdf)

example:
waiting time between
eruptions of Old Faithful pr

ob
ab

ili
ty
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Random variables

A random variable X is a function that associates a number x with 
each outcome O of a process

C t ti X( O ) j t X– Common notation: X( O ) = x, or just X = x
Basically a way to redefine (usually simplify) a probability space to a 
new probability space

– X must obey axioms of probability (over the possible values of x)
– X can be discrete or continuous

Example: X = number of heads in three flips of a coinExample: X = number of heads in three flips of a coin
– Possible values of X are 0, 1, 2, 3
– p( X = 0 ) = p( X = 3 ) = 1 / 8 p( X = 1 ) = p( X = 2 ) = 3 / 8
– Size of space (number of “outcomes”) reduced from 8 to 4

Example: X = average height of five randomly chosen American men 
– Size of space unchanged (X can range from 2 feet to 8 feet) but
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Size of space unchanged (X can range from 2 feet to 8 feet), but 
pdf of X different than for single man 



Multivariate probability distributions

Scenario
– Several random processes occur (doesn’t matter p (

whether in parallel or in sequence)
– Want to know probabilities for each possible 

bi ti f tcombination of outcomes
Can describe as joint probability of several random 
variablesvariables
– Example: two processes whose outcomes are 

represented by random variables X and Y. Probability 
that process X has outcome x and process Y has 
outcome y is denoted as:

( X Y )
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p( X = x, Y = y )



Example of multivariate distribution

joint probability: p( X = minivan, Y = European ) = 0.1481
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Multivariate probability distributions

Marginal probability
– Probability distribution of a single variable in a– Probability distribution of a single variable in a 

joint distribution
– Example: two random variables X and Y:Example: two random variables X and Y:

p( X = x ) = ∑b=all values of Y p( X = x, Y = b ) 
Conditional probabilityConditional probability
– Probability distribution of one variable given

that another variable takes a certain valuethat another variable takes a certain value
– Example: two random variables X and Y:

p( X = x | Y = y ) = p( X = x Y = y ) / p( Y = y )
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p( X = x | Y = y ) = p( X = x, Y = y ) / p( Y = y ) 



Example of marginal probability

marginal probability: p( X = minivan ) = 0.0741 + 0.1111 + 0.1481 = 0.3333
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Example of conditional probability

conditional probability: p( Y = European | X = minivan ) =
0.1481 / ( 0.0741 + 0.1111 + 0.1481 ) = 0.4433
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X = model typeY = manufacturer
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Continuous multivariate distribution

Same concepts of joint, marginal, and conditional 
probabilities apply (except use integrals)
Example: three-component Gaussian mixture in two 
dimensions
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Expected value

Given:
A discrete random variable X with possibleA discrete random variable X, with possible 
values x = x1, x2, … xn

Probabilities p( X = xi ) that X takes on theProbabilities p( X  xi ) that X takes on the 
various values of xi

A function yi = f( xi ) defined on XA function yi  f( xi ) defined on X

The expected value of f is the probability-weightedThe expected value of f is the probability-weighted 
“average” value of f( xi ):

E( f ) = ∑i p( xi ) ⋅ f( xi )
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E( f )  ∑i p( xi ) f( xi )



Example of expected value

Process: game where one card is drawn from the deck
– If face card, dealer pays you $10, p y y $
– If not a face card, you pay dealer $4

Random variable X = { face card, not face card }
– p( face card ) = 3/13
– p( not face card ) = 10/13

Function f( X ) is payout to you
– f( face card ) = 10

f( t f d ) 4– f( not face card ) = -4
Expected value of payout is:

E( f ) = ∑ p( x ) f( x ) = 3/13 10 + 10/13 4 = 0 77
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E( f ) = ∑i p( xi ) ⋅ f( xi ) = 3/13 ⋅ 10 + 10/13 ⋅ -4 = -0.77



Expected value in continuous spaces

E( f ) = ∫x = a → b p( x ) ⋅ f( x )
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Common forms of expected value (1)

Mean (μ)
f( xi ) = xi ⇒ μ = E( f ) = ∑i p( xi ) ⋅ xi

– Average value of X = xi, taking into account probability 
of the various xi

M t f “ t ” f di t ib ti– Most common measure of “center” of a distribution

Compare to formula for mean of an actual sampleCompare to formula for mean of an actual sample

∑
=

=
n

i
ix

N 1

1μ
=i 1
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Common forms of expected value (2)

Variance (σ2)
f( xi ) = ( xi - μ ) ⇒ σ2 = ∑i p( xi ) ⋅ ( xi - μ )2

– Average value of squared deviation of X = xi from 
mean μ, taking into account probability of the various xi

M t f “ d” f di t ib ti– Most common measure of “spread” of a distribution
– σ is the standard deviation

Compare to formula for variance of an actual sample

∑
n

22 )(1 ∑
=

−
−

=
i

ix
N 1

22 )(
1

1 μσ
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Common forms of expected value (3)

Covariance
f( xi ) = ( xi - μx ), g( yi ) = ( yi - μy ) ⇒

cov( x y ) = ∑ p( x y ) ⋅ ( x - μ ) ⋅ ( y - μ )cov( x, y ) = ∑i p( xi , yi ) ⋅ ( xi - μx ) ⋅ ( yi - μy )
– Measures tendency for x and y to deviate from their means in 

same (or opposite) directions at same time

ov
ar

ia
nc

e high (pos
covaria

no
 c

o sitive)
ance

Compare to formula for covariance of actual samples

∑ −−=
n

yxyx ))((1)cov( μμ
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Correlation

Pearson’s correlation coefficient is covariance normalized 
by the standard deviations of the two variables

yx

yxyx
σσ

),cov(),(corr =

– Always lies in range -1 to 1
– Only reflects linear dependence between variables

Linear dependence 
with noise

Linear dependenceLinear dependence 
without noise

Various nonlinear 
dependencies
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Complement rule

Given: event A, which can occur or not

p( not A ) = 1 p( A )p( not A ) = 1 - p( A )

Ω

A not A
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Product rule

Given: events A and B, which can co-occur (or not)

p( A B ) = p( A | B ) p( B )p( A, B ) = p( A | B ) ⋅ p( B )
(same expression given previously to define conditional probability)

B( A B )A
(not A, not B)

(A, not B)

B( A, B )

(not A, B)

A

Ω
(A, not B) (not A, B)
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Example of product rule

Probability that a man has white hair (event A) 
and is over 65 (event B) 
– p( B ) = 0.18
– p( A | B ) = 0.78
– p( A, B ) = p( A | B ) ⋅ p( B ) =

0.78 ⋅ 0.18 =
0.14
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Rule of total probability

Given: events A and B, which can co-occur (or not)

p( A ) = p( A B ) + p( A not B )p( A ) = p( A, B ) + p( A, not B )
(same expression given previously to define marginal probability)

B( A B )A
(not A, not B)

(A, not B)

B( A, B )

(not A, B)

A

Ω
(A, not B) (not A, B)
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Independence

Given: events A and B, which can co-occur (or not)

p( A | B ) = p( A ) or p( A B ) = p( A ) p( B )p( A | B ) = p( A )    or    p( A, B ) = p( A ) ⋅ p( B )

Ω

(not A, B)(not A, not B)

Ω

B

(A, not B) ( A, B )A
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Examples of independence / dependence

Independence:
– Outcomes on multiple rolls of a diep
– Outcomes on multiple flips of a coin
– Height of two unrelated individuals
– Probability of getting a king on successive draws from 

a deck, if card from each draw is replaced
D dDependence:
– Height of two related individuals

Duration of successive eruptions of Old Faithful– Duration of successive eruptions of Old Faithful
– Probability of getting a king on successive draws from 

a deck, if card from each draw is not replaced
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Example of independence vs. dependence

Independence: All manufacturers have identical product 
mix. p( X = x | Y = y ) = p( X = x ).
Dependence: American manufacturers love SUVs, 
Europeans manufacturers don’t.
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Bayes rule

A way to find conditional probabilities for one variable when 
conditional probabilities for another variable are known.

p( B | A ) = p( A | B ) ⋅ p( B ) / p( A )
where p( A ) = p( A, B ) + p( A, not B )

(not A, not B)
B( A, B )A

Ω
(A, not B) (not A, B)

Ω
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Bayes rule

posterior probability ∝ likelihood × prior probability

p( B | A )  =  p( A | B )  ⋅ p( B )  /  p( A )

(not A, not B)
B( A, B )A

Ω
(A, not B) (not A, B)

Ω
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Example of Bayes rule

Marie is getting married tomorrow at an outdoor ceremony in the 
desert.  In recent years, it has rained only 5 days each year. 
Unfortunately the weatherman is forecasting rain for tomorrow WhenUnfortunately, the weatherman is forecasting rain for tomorrow. When 
it actually rains, the weatherman has forecast rain 90% of the time. 
When it doesn't rain, he has forecast rain 10% of the time. What is the 
probability it will rain on the day of Marie's wedding?probability it will rain on the day of Marie s wedding? 
Event A: The weatherman has forecast rain. 
Event B: It rains. 
We know:

– p( B ) = 5 / 365 = 0.0137   [ It rains 5 days out of the year. ]
– p( not B ) = 360 / 365 = 0.9863p( )
– p( A | B ) = 0.9   [ When it rains, the weatherman has forecast 

rain 90% of the time. ]
p( A | not B ) = 0 1 [When it does not rain the weatherman has
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– p( A | not B ) = 0.1   [When it does not rain, the weatherman has 
forecast rain 10% of the time.]



Example of Bayes rule, cont’d.

We want to know p( B | A ), the probability it will rain on 
the day of Marie's wedding, given a forecast for rain by 
th th Th b d t i d fthe weatherman. The answer can be determined from 
Bayes rule:

1. p( B | A ) = p( A | B ) ⋅ p( B ) / p( A )1. p( B | A ) p( A | B ) p( B ) / p( A )
2. p( A ) = p( A | B ) ⋅ p( B ) + p( A | not B ) ⋅ p( not B ) = 

(0.9)(0.014) + (0.1)(0.986) = 0.111
3. p( B | A ) = (0.9)(0.0137) / 0.111 = 0.111 

The result seems unintuitive but is correct. Even when the 
weatherman predicts rain, it only rains only about 11% of 
the time. Despite the weatherman's gloomy prediction, it 
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is unlikely Marie will get rained on at her wedding. 



Probabilities: when to add, when to multiply

ADD: When you want to allow for occurrence of 
any of several possible outcomes of a singleany of several possible outcomes of a single
process.  Comparable to logical OR.

MULTIPLY: When you want to allow for 
simultaneous occurrence of particular outcomes p
from more than one process.  Comparable to 
logical AND.
– But only if the processes are independent.
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Linear algebra applications

1) Operations on or between vectors and matrices
2) Coordinate transformations2) Coordinate transformations
3) Dimensionality reduction
4) Linear regression4) Linear regression
5) Solution of linear systems of equations

M th6) Many others

Applications 1) – 4) are directly relevant to this 
course.  Today we’ll start with 1).
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Why vectors and matrices?

Most common form of data 
organization for machine

vector

organization for machine 
learning is a 2D array, where
– rows represent samples 

Refund Marital 
Status 

Taxable 
Income Cheat

Yes Single 125K No 

No Married 100K No p p
(records, items, datapoints)

– columns represent attributes 

No Single 70K No 

Yes Married 120K No 

No Divorced 95K Yes 

No Married 60K No p
(features, variables)

Natural to think of each sample 

Yes Divorced 220K No 

No Single 85K Yes 

No Married 75K No 

No Single 90K Yes 

as a vector of attributes, and 
whole array as a matrix

10 

matrix
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Vectors

Definition: an n-tuple of values (usually real 
numbers).numbers).
– n referred to as the dimension of the vector
– n can be any positive integer from 1 to infinityn can be any positive integer, from 1 to infinity

Can be written in column form or row form
Column form is conventional– Column form is conventional

– Vector elements referenced by subscript
⎞⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

x

x
M
1

x ( )
t ""T

1
T

nxx L=x
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Vectors

Can think of a vector as:
– a point in space or– a point in space or
– a directed line segment with a magnitude and 

directiondirection 
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Vector arithmetic

Addition of two vectors
– add corresponding elementsadd corresponding elements

– result is a vector
( )T11 nn yxyx ++=+= Lyxz

Scalar multiplication of a vector
– multiply each element by scalar

( )T1 naxxaa L== xy
– result is a vector
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Vector arithmetic

Dot product of two vectors
lti l di l t th dd d t– multiply corresponding elements, then add products

∑=⋅=
n

ii yxa yx

– result is a scalar
=i 1

y

Dot product alternative form
( )θcosyxyx =⋅=a θ( )yy

x
θ
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Matrices

Definition: an m x n two-dimensional array of 
values (usually real numbers).
– m rows
– n columns

Matrix referenced by two-element subscript
– first element in

⎞⎛subscript is row
– second element in ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

n

aa

aa
MOM

L 111

A

subscript is column
– example: A24 or a24 is element in second row, 

⎟
⎠

⎜
⎝ mnm aa L1
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Matrices

A vector can be regarded as special case of a 
matrix, where one of matrix dimensions = 1.
Matrix transpose (denoted T)
– swap columns and rows

row 1 becomes column 1, etc.

– m x n matrix becomes n x m matrix
– example:

⎞⎛ 30172 ⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

67
42

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
81364
30172

A

⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜ −−=

10
31TA
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Matrix arithmetic

Addition of two matrices
– matrices must be same size

⎞⎛

=+= BAC
matrices must be same size

– add corresponding elements:
cij = aij + bij ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++ nn

bb

baba
MOM

L 111111

ij ij ij
– result is a matrix of same size

⎟
⎠

⎜
⎝ ++ mnmnmm baba L11

Scalar multiplication of a matrix
– multiply each element by scalar:

b d ⎟
⎞

⎜
⎛ ⋅⋅

=⋅=

nadad
d
L 111

AB

bij = d ⋅ aij
– result is a matrix of same size ⎟

⎟
⎟

⎠
⎜
⎜
⎜

⎝ ⋅⋅ mnm adad L

MOM

1
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Matrix arithmetic

Matrix-matrix multiplication
– vector-matrix multiplication just a special casep j p

TO THE BOARD!!

Multiplication is associative
A ⋅ ( B ⋅ C ) = ( A ⋅ B ) ⋅ C

Multiplication is not commutative
A B ≠ B A (generally)A ⋅ B ≠ B ⋅ A (generally)

Transposition rule:
( A ⋅ B )T = B T ⋅ A T
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Matrix arithmetic

RULE: In any chain of matrix multiplications, the 
column dimension of one matrix in the chain mustcolumn dimension of one matrix in the chain must 
match the row dimension of the following matrix 
in the chain.
Examples

A 3 x 5 B 5 x 5 C 3 x 1
Right:

A ⋅ B ⋅ AT CT ⋅ A ⋅ B AT ⋅ A ⋅ B C ⋅ CT ⋅ AC C C
Wrong:

A ⋅ B ⋅ A C ⋅ A ⋅ B A ⋅ AT ⋅ B CT ⋅ C ⋅ A
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Vector projection

Orthogonal projection of y onto x
– Can take place in any space of dimensionality > 2Can take place in any space of dimensionality > 2
– Unit vector in direction of x is

x / || x || y

– Length of projection of y in
direction of x is

|| y || cos(θ ) x
θ|| y || ⋅ cos(θ )

– Orthogonal projection of
y onto x is the vector

x
projx( y )

y
projx( y )   =   x ⋅ || y || ⋅ cos(θ ) / || x ||   =
[ ( x ⋅ y ) / || x ||2 ] x (using dot product alternate form)
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Optimization theory topics

Maximum likelihood
Expectation maximization
Gradient descent
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