

Table of Contents

Welcome to Computer Science Fundamentals 1

Code.org Values and Philosophy 3
Curriculum Values 3
Pedagogical Approach To Our Values 4

CS Fundamentals Curriculum Overview 6
Course A 7
Course B 9
Course C 11
Course D 13
Course E 15
Course F 17

Teaching and Learning Strategies 19
Student Practices 22
Debugging 23

Course Resources 25
Code.org Website 25
Course Overview Structure and Iconography 26
Lesson Structure and Iconography 29

Types of Lessons in CS Fundamentals 29
Code Studio Debugging Features 37

Implementation and Planning 38
Lesson Pacing 38
Scheduling The Lessons 38
Approach to Teaching in Common Classroom Scenarios 39
Guide for CS Fundamentals teachers during school closures 39
Tech Requirements and Required Materials 41
Getting Help 42
Thanks and Acknowledgements 42

Appendix A: Worksheets for Intro Workshop 43

Appendix B: Worksheets for Deep Dive Workshop 67

Appendix C: Notes 75

Welcome to Computer Science Fundamentals
Welcome to Computer Science Fundamentals, the Code.org curriculum designed for students in kindergarten through fifth
grade (K-5), which includes students 5-11 years old! This guide has been created to help you navigate the lessons in
Courses A-F. It begins with an introduction to the CS Fundamentals curriculum, provides a look into our core values and
methods, and includes a detailed overview of each course offering. You will also find customized implementation solutions
for many different classroom situations.

All Code.org curriculum resources are free to use under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. Our technology is developed as an open source project. Common Sense Media lessons are
shareable under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 licence. No remixing permitted. View
detailed license information at creativecommons.org. Common Sense and other associated names and logos are
trademarks of Common Sense Media, a 501(c)(3) nonprofit organization (FEIN: 41-2024986).

Who is CS Fundamentals for?
CS Fundamentals was built with elementary school educators and students in mind. Courses A-F have been specifically
tailored to students in K-5, and no prior experience is assumed. These courses work best in a classroom setting, led by an
engaged teacher. For scenarios where students will be learning independently or asynchronously, we recommend our CS
Fundamentals Express courses. The lessons in CS Fundamentals are presented with the understanding that many
teachers will not have any previous computer science experience, and educators are therefore encouraged to learn along
with their students.

Which course is right for my students?
CS Fundamentals Courses A-F
CS Fundamentals is made up of 6 courses — one course for each grade, K-5. This grade alignment allows for the most
robust content along the entire elementary pipeline, while also allowing for students and teachers to enter the pathway at
any point.

All courses make suitable entry points for students. Courses E and F feature “ramp up” lessons which are intended to
introduce or review important concepts from previous courses at an accelerated pace.

1

 CS Fundamentals Curriculum Guide

Course A
Kindergarten

Course B
1st Grade

Course C
2nd Grade

Course D
3rd Grade

Course E
4th Grade

Course F
5th Grade

12 lessons,
~12 hours to
complete

12 lessons,
~12 hours to
complete

18 lessons,
~18 hours to
complete

19 lessons,
~19 hours to
complete

19 lessons,
~19-21 hours to
complete

19 lessons,
~19-21 hours to
complete

Concepts

● Digital
Citizenship

● Sequencing
● Loops
● Events

● Digital
Citizenship

● Sequencing
● Loops
● Impacts of

Computing
● Events

● Digital
Citizenship

● Sequencing
● Binary
● Loops
● Events
● Data

● Sequencing
● Events
● Loops
● Conditionals
● Binary
● Digital

Citizenship

● Sprites
● Digital

Citizenship
● Nested Loops
● Functions
● Impacts of

Computing

● Digital
Citizenship

● Variables
● Data
● For Loops
● Internet
● Sprites

CS Fundamentals Express Courses
In addition to courses A-F, CS Fundamentals also offers two “express courses”, which are designed for situations where
the teacher is a less active role in engaging students. An express course might be used, for example, if a student is
learning CS on her own.

Express courses do not have unplugged lessons (lessons that do not use a computer), and instead focus on covering the
content from their A-F counterparts in a way that can be delivered without a teacher. The table below maps courses A-F
and the two express courses:

Standards Mapping

CS Fundamentals was written using both the K–12 Computer Science Framework (​k12cs.org​) and the 2017 Computer
Science Teachers Association (CSTA) standards as guidance. Courses have opportunities to connect to Common Core
and NGSS standards. Details can be found at ​curriculum.code.org/csf/standards​.

Assessments
At Code.org, we believe that you know your students best, which is why we do not attempt to automatically determine
what “grade” students should receive for any given lesson. Instead, we try to build tools that allow you to easily see
student progress and to identify evidence of learning. The ability to see where a student is succeeding and where they
need help is fundamental to providing the opportunity to tailor their learning experience. For that reason, our teacher
dashboard is continually evolving to better highlight the work done by your class sections. Keep an eye on Code.org
Support (​https://support.code.org/​) for more information on changes and improvements.

Please note, we have provided assessment worksheets with most unplugged lessons and “assessment” puzzles for many
online lessons.

2

 CS Fundamentals Curriculum Guide

Course A
Kindergarten

Course B
1st Grade

Course C
2nd Grade

Course D
3rd Grade

Course E
4th Grade

Course F
5th Grade

Pre-reader Express Course
Built with lessons from Courses A - B

Express Course
Built with lessons from Courses C - F

https://k12cs.org/
https://curriculum.code.org/csf/standards/
https://support.code.org/

Code.org Values and Philosophy
Curriculum Values

While Code.org offers a wide range of curricular materials across a wide range of ages, the following values permeate
and drive the creation of every lesson we write.

Computer Science is Foundational for Every Student
We believe that computing is so fundamental to understanding and participating in society that it is valuable for every
student to learn as part of a modern education. We see computer science as a liberal art, a subject that provides students
with a critical lens for interpreting the world around them. Computer science prepares all students to be active and
informed contributors to our increasingly technological society whether they pursue careers in technology or not.
Computer science can be life-changing, not just skill training.

Teachers in Classrooms
We believe students learn best with the help of an empowered teacher. We design our materials for a classroom setting
and provide teachers robust supports that enable them to understand and perform their critical role in supporting student
learning. Because teachers know their students best, we empower them to make choices within the curriculum, even as
we recommend and support a variety of pedagogical approaches. Knowing that many of our teachers are new to
computer science themselves, our resources and strategies specifically target their needs.

Student Engagement and Learning
We believe that students learn best when they are intrinsically motivated. We prioritize learning experiences that are
active, relevant to students’ lives, and provide students authentic choice. We encourage students to be curious, solve
personally relevant problems and to express themselves through creation. Learning is an inherently social activity, so we
interweave lessons with discussions, presentations, peer feedback, and shared reflections. As students proceed through
our pathway, we increasingly shift responsibility to students to formulate their own questions, develop their own solutions,
and critique their own work.

Equity
We believe that acknowledging and shining a light on the historical inequities within the field of computer science is critical
to reaching our goal of bringing computer science to all students. We provide tools and strategies to help teachers
understand and address well-known equity gaps within the field. We recognize that some students and classrooms need
more support than others, and those with the greatest needs should be prioritized. All students can succeed in computer
science when given the right support and opportunities, regardless of prior knowledge or privilege. We actively seek to
eliminate and discredit stereotypes that plague computer science and alienate the very students we aim to reach.

Curriculum as a Service
We believe that curriculum is a service, not just a product. Along with producing high quality materials, we seek to build
and nourish communities of teachers by providing support and channels for communication and feedback. Our products
and materials are not static entities, but a living and breathing body of work that is responsive to feedback and changing
conditions. To ensure ubiquitous access to our curriculum and tools, they are web-based and cross-platform, and will
forever be free to use and openly licensed under a Creative Commons license.

3

 CS Fundamentals Curriculum Guide

Pedagogical Approach To Our Values

When we design learning experiences, we draw from a variety of teaching and learning strategies all with the goal of
constructing an equitable and engaging learning environment.

Role of the Teacher
We design curriculum with the idea that the instructor will act as the lead learner. As the lead learner, the role of the
teacher shifts from being the source of knowledge to being a leader in seeking knowledge. The lead learner’s mantra is: “I
may not know the answer, but I know that together we can figure it out.” A very practical result of this is that we rarely ask
a teacher to lecture or offer the first explanation of a CS concept. We want the class activity to do the work of exposing the
concept to students, allowing the teacher to shape meaning from what the students have experienced. We also expect
teachers to act as the curator of materials. Finally, we include an abundance of materials and teaching strategies in our
curricula - sometimes too many to use at once - with the expectation that teachers have the professional expertise to
determine how to best conduct an engaging and relevant class for their own students.

Discovery and Inquiry
We take great care to design learning experiences in which students have an active and equal stake in the proceedings.
Students are given opportunities to explore concepts and build their own understandings through a variety of physical
activities and online lessons. These activities form a set of common lived experiences that connect students (and the
teacher) to the course content and to each other. The goal is to develop a common foundation upon which all students in
the class can construct their understanding of computer science concepts, regardless of prior experience in the discipline.

Materials and Tools
Our materials and tools are specifically created for learners and learning experiences. They focus on foundational
concepts that allow them to stand the test of time, and they are designed to support exploration and discovery by those
without computer science knowledge. This allows students to develop an understanding of these concepts through “play”
and experimentation. From our coding environments to our non-coding tools and videos, our resources have been
engineered to support the lessons in our curriculum, and thus our philosophy about student engagement and learning. In
that vein, our videos can be a great tool for sensemaking about CS concepts and provide a resource for students to return
to when they want to refresh their knowledge. They are packed with information and “star” a diverse cast of presenters
and CS role models.

Creation and Personal Expression
Many of the projects, assignments, and activities in our curriculum ask students to be creative, to express themselves,
and then to share their creations with others. While certain lessons focus on learning and practicing new skills, our goal is
always to enable students to transfer these skills to creations of their own. Everyone seeks to make their mark on society,
including our students, and we want to give them the tools they need to do so. When computer science provides an outlet
for personal expression and creativity, students are intrinsically motivated to deepen the understandings that will allow
them to express their views and carve out their place in the world.

The Classroom Community
Whether learners are simply conferring with a partner during a warm up discussion, or engaging in a long-term group
project, our belief is that a classroom where students are communicating, solving problems, and creating things is a
classroom that not only leads to active and better learning for students, but also leads to a more inclusive culture in which
all students share ideas and listen to ideas of others. For example, classroom discussions usually follow a
Think-Pair-Share pattern; we ask students to write computer code in pairs.

4

 CS Fundamentals Curriculum Guide

5

 CS Fundamentals Curriculum Guide

CS Fundamentals Curriculum Overview
At the highest level, each CS Fundamentals course is organized into ​concept chunks​.

Each CS Fundamentals course has between 4 and 6 concept chunks, and each chunk can have one or several lessons.
In most cases, concept chunks begin with a computer-free lesson called an ​Unplugged Lesson​, which is meant to
introduce a concept before students engage with programming lessons. Programming lessons require students to use
computers and consist of ​Skill Building​, ​Application​, and ​End of Course Project​ lesson types.

Each course is composed of the following concept chunks:

To illustrate, below are the five lessons contained in the “Loops” concept chunk in Course C, as they appear on Code
Studio.

You will learn more about how the curriculum is organized in the ‘Course Resources’ section below.

The following pages provide an overview of each of the 6 courses in the CS Fundamentals curriculum. For each course,
there is one page giving an overview, describing the core concepts, attitudinal goals, and teaching tips. Then, there is
one page that follows, outlining each lesson of the course.

6

 CS Fundamentals Curriculum Guide

Concept chunks are the big ideas that provide structure to a course. Concept chunks
make it easy for teachers to see at a glance what is covered in a course.

Course A
Kindergarten

Course B
1st Grade

Course C
2nd Grade

Course D
3rd Grade

Course E
4th Grade

Course F
5th Grade

● Digital
Citizenship

● Sequencing
● Loops
● Events

● Digital
Citizenship

● Sequencing
● Loops
● Impacts of

Computing
● Events

● Digital
Citizenship

● Sequencing
● Binary
● Loops
● Events
● Data

● Sequencing
● Events
● Loops
● Conditionals
● Binary
● Digital

Citizenship

● Sprites
● Digital

Citizenship
● Nested Loops
● Functions
● Impacts of

Computing

● Digital
Citizenship

● Variables
● Data
● For Loops
● Sprites

Course A

Overview
Course A offers a computer science curriculum for beginning readers in early elementary grades. Students will learn to
program using commands like loops and events. The lessons featured in this course also teach students to collaborate
with others meaningfully, investigate different problem-solving techniques, persist in the face of difficult tasks, and learn
about internet safety. By the end of this course, students create their very own custom game in the Play Lab programming
environment on Code.org.

Core concepts:

● Digital Citizenship
● Sequencing
● Loops
● Events

Attitudinal goals:

● Programming is fun.
● It’s okay not to get it right the first time.
● I can solve problems if I keep trying.

Key teaching tips:

● Use the stories as a read-aloud and discuss the scenarios as a class.
● Use pair programming and encourage students to help each other.
● Work through sample problems with students as a class.
● Connect unplugged lessons to the online lessons using “bridging activities”.
● Celebrate persistence as well as successes.
● Remind students that they can go back and fix mistakes.
● Honor the humor in the lessons and add more where possible.

7

 CS Fundamentals Curriculum Guide

Course A: Lesson Outlines

Online lessons are in regular text and unplugged lessons are ​bolded​.

8

 CS Fundamentals Curriculum Guide

Concept
Chunk

Lesson Name Description

Digital
Citizenship

1 Safety in My Online
Neighborhood

Created by Common Sense Education, students practice staying safe
while exploring online.

Sequencing

2 Learn to Drag and
Drop

The main goal of this lesson is to build students' experience with
computers. By covering the most basic computer functions such as
clicking, dragging, and dropping, we are creating a more equal playing
field in the class for future puzzles.

3 Happy Maps This activity will help students gain experience reading and writing in
shorthand code.

4 Sequencing with Scrat
This lesson begins with a brief discussion on computer lab manners,
then students progress into using a computer to complete online
puzzles.

5 Programming with
Scrat

In this set of online puzzles, students will build on the understanding of
algorithms, debugging, and general computer literacy.

6 Programming with Rey
and BB-8

In this lesson, students will use their newfound programming skills in
more complicated ways to navigate a tricky course with BB-8.

Loops

7 Happy Loops Students learn about an easier way to solve problems using loops.

8 Loops with Scrat This lesson builds on the idea of using loops in a program.

9 Loops with Laurel Continuing practice with loops, students will help Laurel the Adventurer
collect treasure.

10 Ocean Scene with
Loops

Here, students use loops to create patterns. At the end of this lesson,
students will be given the opportunity to create their own images using
loops.

Events

11 The Big Event Jr. This lesson demonstrates that events are a great way to add variety to
a sequential algorithm.

12 On the Move with
Events

Students will have the opportunity to learn how to use events in Play
Lab and apply their coding skills to create an animated game.

Course B

Overview
Course B was developed with first graders in mind. Tailored to a novice reading level, this course also assumes limited
knowledge of shapes and numbers.

While the concepts in Course B parallel those in Course A, students will be exposed to more sophisticated unplugged
lessons and a greater variety of puzzles. Students will learn the basics of programming, collaboration techniques,
investigation and critical thinking skills, persistence in the face of difficulty, and internet safety. At the end of this course
students will create their very own custom game in the Play Lab programming environment on Code.org.

Core concepts:

● Digital Citizenship
● Sequencing
● Loops
● Impacts of Computing
● Events

Attitudinal goals:

● Programming is fun.
● It’s okay not to get it right the first time.
● I can solve problems if I keep trying.

Key teaching tips:

● Use pair programming and encourage students to help each other.
● Work through sample problems with students as a class.
● Connect unplugged lessons to the online lessons using “bridging activities”.
● Celebrate persistence as well as successes.
● Remind students that they can go back and fix mistakes.
● Honor the humor in the lessons and add more wherever possible.

9

 CS Fundamentals Curriculum Guide

Course B: Lesson Outlines

Online lessons are in regular text and unplugged lessons are ​bolded​.

10

 CS Fundamentals Curriculum Guide

Concept
Chunk

Lesson Name Description

Digital
Citizenship

1 Digital Trails
Created by Common Sense Education, students will learn that the
information they put online leaves a digital footprint or “trail.”

Sequencing

2 Move It, Move It This lesson mentally prepares students for the coding exercises that
they will encounter over the length of this course.

3 Sequencing with
Angry Birds

This lesson begins with a brief discussion on computer lab manners,
then will progress into using a computer to complete online puzzles.

4 Programming with
Angry Birds

In this set of online puzzles, students will build on the understanding
of algorithms, debugging, and general computer literacy.

5 Programming with
Harvester

Students will apply the programming concepts that they have learned
to the Harvester environment.

Loops

6 Getting Loopy Students will dance their way to a better understanding of how to use
repeat loops.

7 Loops with Harvester Building on the concept of repeating instructions, this lesson will
have students using loops to more efficiently get to the veggies.

8 Loops with Laurel Students use loops to collect treasure more efficiently.

9 Drawing Gardens with
Loops

Here, students use loops to create patterns. At the end of this stage,
students will be given the opportunity to create their own images
using loops.

Impacts of
Computing

10 The Right App Students exercise empathy and creativity to sketch their own
smartphone app that addresses the needs of an imaginary user.

Events

11 The Big Event Jr. This lesson shows that events are a great way to add variety to a
pre-written algorithm.

12 A Royal Battle with
Events

In this online activity, students will have the opportunity to learn how
to use events in Play Lab and apply all of the coding skills that
they've learned to create an animated game.

Course C

Overview
Course C was developed for students in and around the second grade. Lessons in this course may assume a limited
understanding of shapes and elementary math concepts.

Students will create programs with sequencing, loops, and events. They will translate their initials into binary, investigate
problem-solving techniques, and develop strategies for building positive communities both online and off. By the end of
the course, students will create interactive games that they can share. Each concept in Course C is taught from the
beginning, graduating toward experiences that allow for growth and creativity to provide all students a rich and novel
programming experience.

Core concepts:

● Digital Citizenship
● Sequencing
● Binary
● Loops
● Events
● Data

Attitudinal goals:

● I can read code and predict the outcome.
● Programming can make repetitive tasks easy.

Key teaching tips:

● Talk with students before you begin about how they may experience frustration.
● Use pair programming and encourage students to help each other.
● Provide lesson examples to set students off on the right foot.
● Connect unplugged lessons to the online lessons using “bridging activities”.
● Celebrate persistence as well as successes.
● Remind students that they can go back and fix mistakes.

11

 CS Fundamentals Curriculum Guide

Course C: Lesson Outlines
Online lessons are in regular text and unplugged lessons are ​bolded​.

12

 CS Fundamentals Curriculum Guide

Concept
Chunk

Lesson Name Description

Digital
Citizenship

1 Putting a STOP to
Online Meanness

Created by Common Sense Education, students learn about meanness and what
to do if they encounter it online.

2 Password
Power-Up

Created by Common Sense Education, students learn about how strong
passwords can help protect their privacy.

Sequencing

3 My Robotic
Friends Jr.

This lesson teaches students about the connection between algorithms and
programming, as well as the valuable skill of debugging.

4 Programming with
Angry Birds

Students will develop sequential algorithms to move a bird from one side of the
maze to reach a pig at the other side.

5 Debugging in Maze Students will step through existing code to identify errors, including incorrect
loops, missing blocks, extra blocks, and blocks that are out of order.

6 Collecting Treasure
with Laurel

Students continue to develop their understanding of algorithms and debugging by
creating sequential algorithms to pick up treasure with Laurel the Adventurer.

7 Creating Art with
Code

This Artist lesson will allow students to create images of increasing complexity
using new blocks like `move forward by 100 pixels` and `turn right by 90 degrees.

Binary 8 Binary Bracelets This lesson helps demonstrate how it is possible to take something from real life
and translate it into a series of ons and offs.

Loops

9 My Loopy Robotic
Friends Jr.

Using the language from the first ‘My Robotic Friends Jr.’ activity, students find
that they can build big structures faster using loops.

10 Loops with Rey and
BB-8

Students will use loops to traverse mazes more efficiently than before.

11 Harvesting Crops
with Loops

Students will loop new actions to help the harvester collect multiple veggies
growing in large bunches.

12 Looking Ahead with
Minecraft

Students will get the chance to practice ideas that they have learned up to this
point, as well as getting a sneak peek at conditionals.

13 Sticker Art with
Loops

This lesson builds on the understanding of loops from previous lessons and gives
students a chance to be truly creative.

Events

14 The Big Event Students will learn that events are a great way to make their program interactive.

15 Build a Flappy
Game

In this special stage, students get to build their own Flappy Bird game by using
event handlers to detect mouse clicks and object collisions.

16 Chase Game with
Events

It's time to get creative and make a game in Play Lab.

Data 17 Picturing Data Students create visualizations of data to help them reason and predict about what
they observe.

Project 18 End of Course
Project

Students plan and build a game using Play Lab, totally from scratch.

Course D

Overview
Course D was created for students who read at roughly a third grade level. Angles and mathematical concepts are
introduced with helpful videos and hints.

The course begins with a review of the concepts found in Courses A, B, and C. This review can be used to introduce or
refresh basic ideas, such as loops and events. Afterward, students will develop their understanding of algorithms, nested
loops, while loops, conditionals, and events, as well as learn about digital citizenship. This course is crafted to build a
strong foundation of basic concepts before opening up to a wide range of new and exciting topics.

Core concepts:

● Sequencing
● Events
● Loops
● Conditionals
● Binary
● Digital Citizenship

Attitudinal goals:

● Struggle is good and a sign that I’m growing.
● I can read programs and predict their outcomes.
● Programs can be written to make simple choices.

Key teaching tips:

● Talk with students before you begin about how they may experience frustration.
● Use pair programming and encourage students to help each other.
● Provide lesson examples to set students off on the right foot.
● Remind students of the importance of persistence.
● Begin to teach students the importance of solving their own issues.
● Encourage students to use a journal during and after activities.
● Give students the opportunity to share successes.

13

 CS Fundamentals Curriculum Guide

Course D: Lesson Outlines

Online lessons are in regular text and unplugged lessons are in ​bolded​ text.

14

 CS Fundamentals Curriculum Guide

Concept
Chunk

Lesson Name Description

Sequencing

1 Graph Paper
Programming In this lesson, students will program their friends to draw pictures.

2 Introduction to Online
Puzzles

This lesson will give students practice in the skills they will need for this
course.

3 Relay Programming This lesson builds on the previous lessons by introducing teamwork.

4 Debugging with Laurel In this lesson, students will learn about the secrets of debugging.

Events

5 Events in Bounce Students get to make their own video game in this lesson.

6 Build a Star Wars
Game Students build their own Star Wars game in this lesson.

7 Dance Party Time to celebrate! In this lesson, students will program their own
interactive dance party.

Loops

8 Loops in Ice Age As a quick update (or introduction) to using loops, this lesson will have
students using the repeat block to get Scrat to the acorn more efficiently.

9 Drawing Shapes with
Loops

In this lesson, loops make it easy for students to make even cooler
images with Artist.

10 Nested Loops in Maze This lesson will teach students what happens when they place a loop
inside another loop.

Conditionals

11 Conditionals with
Cards

It's time to play a game in which students earn points only under certain
conditions.

12 If/Else with Bee Now that students understand conditionals, it's time to program Bee to
use them when collecting honey and nectar.

13 While Loops in Farmer This lesson will teach students about a new kind of loop: while loops.

14 Until Loops in Maze Students learn to use until loops in this lesson.

15 Harvesting with
Conditionals

This lesson will help students practice deciding when to use each
conditional.

Binary

16 Binary Images Students learn how computers store pictures using simple ideas like on
and off.

17 Binary Images with
Artist In this lesson, students will learn how to make images using binary.

Digital
Citizenship

18 Be A Super Digital
Citizen

Created by Common Sense Education, students learn how they can be
upstanders when they see cyberbullying.

Project 19 End of Course Project This capstone lesson takes students through the process of designing,
developing, and showcasing their own projects!

Course E

Overview
Course E in CS Fundamentals was tailored to the needs of students in the fourth grade.

At this point, students should be growing in their confidence with using basic programming concepts and are ready to start
using them to solve more novel problems. Throughout this course, students will learn to identify when to apply and
combine the many concepts they’ve learned in previous courses. Students will begin with some light review, followed by a
deep dive into the idea of functions. For many, the lessons in Course E will provide the first puzzles where difficult
concepts are mixed together, making it one of the most challenging courses in the series.

Because of the complexity of Course E, it is important to be consistent with expectations from the very beginning. With
fourth graders, it is advised that students are encouraged to work together to find solutions rather than relying on help
from the teacher or another experienced supervisor. Students should be empowered to try multiple techniques and
should be given praise for persistence and for helping others.

Ultimately, Course E will set the foundation for Course F in the fifth grade. This means that it is as critical for students to
understand the ideas behind each puzzle as it is for them to successfully solve it. For this reason, you might want to show
students how to use peer interaction or journaling to help with difficult puzzles. Mainly, they should be able to ask and
answer four questions:

● What does the puzzle want me to do?
● What did I try to make that happen?
● Where did it go wrong?
● What might be the next thing I could try?

Core concepts:

● Sprites
● Digital Citizenship
● Nested Loops
● Functions
● Impacts of Computing

Attitudinal goals:

● There are often many ways to solve a problem.
● Reflecting on past problems helps me solve new ones.
● Programming is creative.

Key teaching tips:

● Talk with students before you begin about how they may experience frustration.
● Use pair programming and encourage students to help each other.
● Require students to make a first attempt at problem solving before asking for help.
● Remind students of the importance of persistence.
● Encourage students to use a journal during and after activities.
● Promote an environment of cross-team collaboration for group activities and projects.

15

 CS Fundamentals Curriculum Guide

Course E: Lesson Outlines
Online lessons are in regular text and unplugged lessons are ​bolded​.

16

 CS Fundamentals Curriculum Guide

Concept
Chunk

Lesson Name Description

Ramp Up

1 Sequencing in Maze Students will practice sequencing and debugging before adding new skills.

2 Drawing with Loops This lesson gets students thinking about why loops are better than longhand.

3 Conditionals in Minecraft:
Voyage Aquatic

Students will get the chance to practice ideas that they have learned up to
this point, as well as getting a sneak peek at conditionals.

4 Conditionals with the
Farmer

This lesson introduces students to `while` loops and `if / else` statements.

Sprites

5 Simon Says

In this lesson, students will play a game intended to get them thinking about
the way commands need to be given to produce the right result. This will help
them more easily carry over to the Sprite Lab programming environment in
the upcoming lessons.

6 Swimming Fish with
Sprite Lab

In this lesson, students will learn about the two concepts at the heart of Sprite
Lab: sprites and behaviors.

7 Alien Dance Party with
Sprite Lab

Using Sprite Lab, students create their own alien dance party with
interactions between characters and user input.

Digital
Citizenship

8 Private and Personal
Information

Created by Common Sense Education, this lesson is about the difference
between information that is safe to share online and information that is not.

9 About me with Sprite Lab By creating an interactive poster in Sprite Lab, students will apply their
understanding of sharing personal and private information on the web.

10 Digital Sharing Students will learn the proper way to use content that is not their own.

Nested Loops

11 Nested Loops in Maze In this online activity, students will have the opportunity to push their
understanding of loops to a whole new level.

12 Fancy Shapes using
Nested Loops

Students will create intricate designs using Artist. By continuing to practice
nested loops with new goals, students will see more uses of loops in general.

13 Nested Loops with
Frozen

This lesson will take students through a series of exercises to help them
create their own portfolio-ready images.

Functions

14 Songwriting This lesson will help students intuitively understand why combining chunks of
code into functions can be such a helpful practice.

15 Functions in Minecraft Students will begin to understand how functions can be helpful in this fun and
interactive Minecraft adventure.

16 Functions with Harvester
Students will use functions to harvest crops in Harvester. This lesson will
push students to use functions in the new ways by combining them with
`while` loops and `if / else` statements.

17 Functions with Artist Students will be introduced to using functions with the Artist to create and
modify magnificent images.

Impacts of
Computing

18 Designing for
Accessibility

In this lesson, students will learn about accessibility and the value of empathy
through brainstorming and designing accessible solutions for hypothetical
apps.

Project 19 End of Course Project Students will be given their own space to create their project with either Artist
or Sprite Lab.

Course F

Overview
The final course in CS Fundamentals is tailored to the needs of students in the fifth grade.

In this course, students will investigate problem-solving techniques and discuss societal impacts of computing and the
internet. By the end of the course, students will have created interactive stories and games that they can share with their
friends and family.

In Course F, students begin to understand how the concepts that they have learned impact the world around them and
how they can be applied to solve interesting and personally-relevant problems. By this point, students should be
cognitively mature enough to think about plans that they want to bring to life and have the skills to start down that path.

Starting with the first few lessons, students are given greater autonomy and creative freedom in programming, which also
necessitates an increased emphasis on debugging and problem solving. Students in the fifth grade should be expected to
take the first steps in solving all of their own coding problems as they arise. When solving problems, they should be
encouraged to work with peers to overcome obstacles rather than relying on the teacher to do so.

Remember, ​solving​ a puzzle is not as important as ​understanding​ a puzzle, so when students are stuck, encourage them
to look at several angles until a solution begins to appear.

Core concepts:

● Digital Citizenship
● Variables
● Data
● For Loops
● Sprites

Attitudinal goals:

● I can use computer science to solve real and meaningful problems.
● Programming is creative.

Key teaching tips:

● Talk with students before you begin about how they may experience frustration.
● Use pair programming and encourage students to help each other.
● Require students to make a first attempt at problem solving before asking for help.
● Remind students of the importance of persistence.
● Encourage students to use a journal during and after activities.
● Promote an environment of cross-team collaboration for group activities and projects.

17

 CS Fundamentals Curriculum Guide

Course F: Lesson Outlines
Online lessons are in regular text and unplugged lessons are ​bolded​.

18

 CS Fundamentals Curriculum Guide

Concept
Chunk

Lesson Name Description

Ramp Up

1 Functions in Minecraft Students will begin to understand how functions can be helpful in this fun
and interactive Minecraft adventure.

2
Swimming Fish with
Sprite Lab

This lesson is designed to introduce students to the Sprite Lab programming
environment and allow them to apply concepts they learned in other
environments to this tool.

3 Alien Dance Party with
Sprite Lab

Using Sprite Lab students create their own alien dance party with
interactions between characters and user input.

4 Drawing with Loops This Artist stage will allow students to create images of increasing complexity
using new blocks and the concept of loops.

5 Nested Loops in Maze In this online activity, students will have the opportunity to push their
understanding of loops to a whole new level.

Digital
Citizenship

6 The Power of Words Created by Common Sense Education, students learn what they should do
when someone uses mean or hurtful language on the internet.

Variables

7 Envelope Variables This lesson explains what variables are and how to use them.

8 Variables with Artist Students explore the creation of repetitive designs using variables in Artist.

9 Changing Variables with
Bee

Students will get further practice with variables with the bee.

10 Changing Variables with
Artist

This artist level takes variables to new heights.

Data

11 Simulating Experiments By running a simple simulation in Sprite Lab, students will experience how
computing can be used to collect data that identify trends or patterns.

12 AI for Oceans
This tutorial is designed to quickly introduce students to machine learning, a
type of artificial intelligence. Students will explore how training data is used to
enable a machine learning model to classify new data.

13 The Internet In this lesson, students will pretend to flow through the internet, all the while
learning about connections, URLs, IP addresses, and the DNS.

For Loops

14 For Loop Fun Students play a game with dice to learn a powerful new programming
concept: for loops.

15 For Loops with Bee This lesson focuses on `for` loops as students look for patterns in puzzles
with the bee.

16 For Loops with Artist Students continue to practice `for` loops, this time with Artist.

Sprites

17 Behaviors in Sprite Lab Here, students will use Sprite Lab to create their own customized behaviors.

18 Virtual Pet with Sprite
Lab

In this lesson, students will create an interactive Virtual Pet that looks and
behaves how they wish.

Project 19 End of Course Project Students will be given their own space to create their project with either Artist
or Sprite Lab.

Teaching and Learning Strategies
The following teaching and learning strategies for CS Fundamentals are used repeatedly in many different lessons and
units. They represent our ideal approach to delivering these lessons in a classroom and are at the core of the ways the
curriculum is designed as we believe these are critical to positive classroom culture and ultimately student learning.

Lead Learner

What is it?
The curriculum has been written with the idea that the instructor
will act as the lead learner. As the lead learner, your role shifts
from being the source of knowledge to being a leader in seeking
knowledge. The lead learner’s mantra is: “I may not know the
answer, but I know that together we can figure it out.” The
philosophy of the lead learner is that you don’t have to be an
expert on everything; you can start teaching CS Fundamentals
knowing what you already know and learn alongside your
students. To be successful with this style of teaching and learning,
the most important things are modeling and teaching how to learn.

How does it connect to the curriculum?
One of the Code.org curriculum values is developing teachers who are new to computer science. In order to support those
teachers, the curriculum is set up to create an engaging and relevant class that helps students uncover and develop the
knowledge they need. This makes it possible for a teacher to lead the course without knowing all of the answers at first,
as long as they embrace the lead learner role. In addition, it is not possible to have complete command over every
rapidly-changing facet of computer science, no matter how much experience you have. Rather than feeling daunted, the
lead learner welcomes this fact.

We believe that the lead learner technique represents good teaching practice in general. Acting as the lead learner is an
act of empathy toward your students and the challenges they face in learning material for the first time. One important job
of the teacher in the CS Fundamentals classroom is to model excitement about investigating how things work by asking
motivating questions about why things work the way they do and or why they are the way they are. With your guidance,
students will learn how to hypothesize; ask questions of peers; test, evaluate, and refine solutions collaboratively.

How do I use it?

● Allow students to dive into an activity without front loading the content first.
● Encourage students to rely on each other for support.
● Don’t give the answer right away, even if you know it.
● Feel open to making mistakes in front of students so that they see it is part of the learning process.
● Ask students questions that direct their attention toward the issue to investigate without giving away what they

need to change.
● Model the steps you would go through as a learner of a new subject. Explain the different questions you ask

yourself along the way and the ways you go about finding answers.

19

 CS Fundamentals Curriculum Guide

Pair Programming
What is it?
Pair programming is a technique in which two programmers work together at one computer. The “driver” writes code while
the “navigator” directs the design and setup of the code. The two programmers switch roles often. Pair programming has
been shown to:

● improve computer science enrollment, retention, and students' performance.
● increase students' confidence.
● develop students' critical thinking skills.
● introduce students to a "real world" working environment.

How does it connect to the curriculum?
In CS Fundamentals there are many lessons on the computer (plugged lessons) during which students develop
programming skills. Pair programming can help to foster a sense of camaraderie and collaboration and can promote
diversity in the classroom by reducing the "confidence gap" between female and male students, while increasing the
programming confidence of all students.

How do I use it?
To get students pair programming:

1. Form pairs.
2. Give each pair one computer to work on.
3. Decide upon initial roles.
4. Have students start working.
5. Ensure that students switch roles at regular intervals

(every 3 to 5 minutes).
6. Ensure that navigators remain active participants.

It can be hard to introduce pair programming after students
have worked individually for a while, so we recommend that
teachers start with pair programming in the first few lessons.
Just like any other classroom technique, you may not want to
use this all the time as different types of learners will respond differently to working in this context. Once you have
established pair programming as a practice early on, it will be easier to come back to later.

Resources
Code.org also has a feature to help both students get “credit” on their accounts for the work they do together. Check out
the blog on Pair Programming: ​https://goo.gl/MorPnx​.

Videos:

● For Teachers: ​youtu.be/sxToW3ixrwo
● For Students: ​youtu.be/vgkahOzFH2Q

The National Center for Women & Information Technology (NCWIT) has a great resource about the benefits of pair
programming. Check it out at: ​www.ncwit.org/resources/pair-programming-box-power-collaborative-learning

20

 CS Fundamentals Curriculum Guide

https://goo.gl/MorPnx
https://youtu.be/sxToW3ixrwo
https://youtu.be/vgkahOzFH2Q
https://www.ncwit.org/resources/pair-programming-box-power-collaborative-learning

Authentic Choice
What is it?
Authentic choice is the practice of allowing students to decide on the focus of their creation when they are working on a
project. This can be scoped in different ways with different projects, but the central point is to allow students to work on
something they are personally invested in.

How does it connect to the curriculum?
In the curriculum, we give students many opportunities to work on projects that we hope will feel personally relevant.
Whether it be a small freeplay level at the end of a lesson or a course project designed by students in upper elementary,
every student should get ample opportunity to develop creations of their own.

In addition, we encourage teachers to help students utilize their new skills in creative ways at the end of each lesson
using the Lesson Extras option. There, students will find challenge puzzles and open-canvas projects to use for deeper
learning and self-expression.

How do I use it?

● Give students time to get creative and find something they
are passionate about in the project that they are working
on.

● Encourage students to find personally relevant contexts
for the work they do.

● Try to keep the projects as open to students’ interests as
possible while still keeping them focused on the learning
at hand.

Journaling

What is it?
In CS Fundamentals, students are encouraged to keep a journal nearby to write down thoughts and answer questions.

How does it connect to the curriculum?
Courses A-F of Computer Science Fundamentals were written with the importance of journaling in mind. Journaling for
reflection is a popular tool in education, but we take that one step further. Like a chemist would catalog strategies and
solutions, so do we ask our budding computer scientists to take notes on their trials and achievements. Journals are
useful as scratch paper for building, debugging, and strategizing, and they offer a fantastic resource for referencing
previous answers when struggling with more complex problems.

How do I use it?

● Encourage students to keep their journals beside them at all times when coding.
● Remind students that they can write solutions out longhand, then circle patterns to find prime opportunities for

loops and functions.
● Have students copy down answers to puzzles that they might need in future levels.
● Ask students to draw emoticons at the top of the pages to help them identify how they’re feeling about concepts.
● End each lesson with a thought or question that students can answer in writing as a way of reflecting on their

growth for the day.

21

 CS Fundamentals Curriculum Guide

Student Practices
Lessons in CS Fundamentals help students work in a wide array of contexts, but these experiences are tied together by a
core set of practices and skills they develop throughout each course. These student practices provide coherence and
serve as helpful reminders of the high-level skills and dispositions we want students to develop.

Problem Solving

● Use a structured problem solving-process to help solve new problems.
● View challenges as solvable problems.
● Break down larger problems into smaller components.

Persistence
● Value and expect mistakes as a natural and productive part of problem solving.
● Continue working towards solutions in spite of setbacks.
● Iterate and continue to improve partial solutions.
● Keep track of elements that worked and elements that did not to avoid repeating mistakes.

Creativity
● Incorporate your own interests or ideas into your work.
● Experiment with new ideas and consider multiple possible approaches.
● Extend or build upon the ideas and projects of others.

Collaboration
● Work with others to develop solutions that incorporate all contributors.
● Mediate disagreements and help teammates agree on a common solution.
● Actively contribute to the success of group projects.

Communication
● Structure your work so that it can be easily understood by others.
● Consider the perspective and background of your audience when presenting your work.
● Provide and accept constructive feedback in order to improve your work.

22

 CS Fundamentals Curriculum Guide

Debugging
Everyone gets bugs! Therefore, debugging is an essential skill all students should develop that builds on the student
practices discussed above. Without strong debugging skills, students can become frustrated. Help keep students moving
by implementing both active and reflective debugging strategies in your classroom.

Active Debugging
New programmers are prone to writing long chunks of code without pausing to read or test their work along the way,
which can snowball into a program that is very hard to debug. To prevent this, we suggest implementing active debugging
as part of a general coding philosophy.

Active debugging describes the practice of debugging ​while​ coding. This generally means students taking time during
coding exercises to read, process, and test small pieces of code that they have just written. “Small pieces of code” is
relative, of course, particularly if students are tasked with coming up with a solution that requires just one or two blocks.
However, the practice itself can be tremendously helpful as students write longer programs, which gradually occurs in all
CS Fundamentals courses.

A practical student-facing guide to active debugging exists in our ​Debugging Guide​, which can be found on the Course
Overview Page of each course, and is shown below. This guide lists active debugging strategies for students. We suggest
making this document available to students as a classroom poster or individual handout, then referring to it as students
progress through your course.

Guide to Debugging

Reflective Debugging
While students are working, you will notice the same issues appearing again and again. Some students are able to quickly
move through these issues, while others are left behind. Even with active debugging practices in place, these experiences
can be disheartening for any teacher. However, they can, in fact, inspire a productive reflective debugging session at
some point during the class.

Active debugging is how individual students can find and fix their own bugs. Reflective debugging, on the other hand, is a
practice in which students participate in debugging as an entire class. ‘Bug Talks’ and keeping a ‘bug tracker’ are two
examples of strategies that can be used to implement reflective debugging in your classroom and are described below:

23

 CS Fundamentals Curriculum Guide

Bug Talks
Bug Talks are very similar to “Number Talks” from the world of mathematics education. Teachers can use Bug Talks
before, during, or after class to help students clear up misconceptions that manifest as common bugs. A typical Bug Talk
should last 5-10 minutes and might proceed as follows:

1. A problem is displayed for students to solve on their own, quietly. The problem should be small enough that they
can solve it mentally or with scratch paper. Students who were able to solve the problem very quickly should try
coming up with more than one solution. An example problem might be a buggy solution to a puzzle on the
website, perhaps similar to the one students are currently struggling with.

2. After having time to work alone, students can share their ideas with a neighbor.
3. After sharing with a neighbor, students raise hands to share answers with the class.
4. The teacher neutrally records as many answers as possible on the board. That is, the teacher does not say which

are correct or incorrect. Duplicate answers are given +1, +2, and so forth.
5. Teacher calls on students to explain the reasoning behind their answers. Students can respond to each other’s

arguments with sentence starters like, “I agree/disagree, because…”.
6. Finally, students discuss and vote on which answer they collectively believe is the best solution.

To conclude a Bug Talk, teachers should reiterate why the chosen strategy works best, including any unmentioned points
the class might not have brought up.

Bug Tracker
A Bug Tracker is a poster that can help your students name and understand common problems they encounter while
coding. Throughout a CS Fundamentals course, students collectively drive the development of their class’ Bug Tracker
through teacher-led discussions about coding and problem solving.

24

 CS Fundamentals Curriculum Guide

Why Create a
Bug Tracker?

Small misconceptions can lead to big problems when learning to code. You can help students clear
these misconceptions by facilitating class discussions about specific instances of bugs they catch.
During these discussions, your Bug Tracker can be used as a class-sourced running record that
generalizes those instances into more widely applicable and accurate coding concepts.

In addition to identifying and describing common bugs, students should share debugging strategies
on your Bug Tracker as well. This collective exchange of knowledge can help empower students to
persist together through even the toughest challenges.

When Should I
Introduce a Bug
Tracker?

To ensure your class develops the foundation of documenting bugs and debugging as early as
possible, the introduction of the Bug Tracker should coincide with the first programming lesson, then
be revisited throughout the course as needed.

How Do I Use
the Bug
Tracker?

You may want to discuss bugs students have found at the beginning or end of class, or even
potentially during class if it seems many students are encountering the same types of problems.
Encourage students to refer back to the Bug Tracker while they work. You can challenge your
students to look for the bugs they spotted as they work. Have them tell a neighbor when they see
one. Can they come up with strategies to get past it? Ask students to hold on to new bugs if they
happen to find them. They can share their bugs during the next Bug Talk.

What “Bugs”
Might Appear
on a Bug
Tracker?

This is actually a great question and one that we hope your students will grapple with as they learn.
At least at the beginning of your course, you might hear students suggest, “The computer won’t turn
on,” or “The Internet is slow” be added to the class’ Bug Tracker. This is a perfect time to discuss,
and further instill, the meaning of “coding” and “debugging,” although relating these CS-specific
concepts to other difficulties students experience (technical and non-technical) is certainly worthy of
discussion.

Course Resources
The CS Fundamentals curriculum is made up of student-facing and teacher-facing components. Teachers will access
curriculum materials in two different places on the Code.org website: our Code Studio platform and in the teacher-facing
curriculum. The table below outlines what you can do in each of these places:

The following pages contain an overview of the layout and organization of these important course resources.

Code.org Website
Log in to Code.org with your teacher account. The website header will help you navigate the site:

The Code.org home page is the starting point for everything in the curriculum. To get started with your students, you will
need to create a section. For details on how to create a section, visit the ​getting started ​support articles at
support.code.org​.

Once you’ve assigned your CS Fundamentals students to a section, a tile that can be used to access the course overview
page will appear on the homepage. This is your starting point for lesson planning and all the resources you need to teach
the course.

25

 CS Fundamentals Curriculum Guide

Code Studio Teacher-facing Curriculum

● Access all online student-facing lesson materials
○ Review completed student work, including

program code and assessment questions
● Create and manage sections of students, including

assigning courses and lessons to students

● Access teacher-facing lesson plans that provide
detailed context for how to deliver lessons

● Navigate links to all printable materials needed for
the course

● Explore course resources, such as standards
mapping, vocabulary lists, code documentation,
PDFs of lessons, etc.

http://support.code.org/

Course Overview Structure and Iconography

Code Studio — Course Overview
The course overview page on Code Studio (e.g., ​studio.code.org/s/coursea​) is a hub for managing your course and
includes the following:

Using the toggle on the top right of the unit overview page in Code Studio yields one of two options: a detailed view of the
unit or a collapsed view:

26

 CS Fundamentals Curriculum Guide

http://studio.code.org/s/coursea

Code Studio - Iconography on Course Overview page

When looking at the detailed view of the course overview page (e.g., ​studio.code.org/s/coursea​) described above, you will
notice a number of different icons that represent different types of levels within a given lesson. Those icons are listed
below, along with a brief description of what they represent and how you might use them as a teacher.

27

 CS Fundamentals Curriculum Guide

These levels contain videos along with any other resources necessary for students to
access while completing unplugged lessons.

Because the nature of an unplugged lesson means that you might not want your students
on a computer during the lesson, you should feel free to project these resources at the
front of the room and invite any students who missed the unplugged lesson to use the
materials posted here as a tool to learn more about what they missed.

These levels contain instructions, text, or images to help you run a class activity. Lesson
instructions will indicate how these levels should be incorporated into the activity. A
lesson overview provides a short activity description and links to documents used
throughout the lesson.

Consider going over these as a whole-class activity. These also provide good stopping
points to check in with the students and make sure everyone is together before moving on
to the next set of tasks.

Video levels contain a video to be used in the curriculum and are typically hosted in
multiple formats, including a downloadable file, to be compatible with a variety of
technology needs across classrooms.

Videos can be watched as a whole class to allow for group discussion afterward. Remind
students that they can use these videos as reference if they need some extra help during
programming.

These levels represent some sort of check for understanding, usually in the form of
multiple-choice or free-response questions. You will find these levels in individual lessons,
indicated with an assessment icon. In that case, these are intended to be used as
formative​ assessment items. Students can always see them and change their responses
at any time.

Question levels are also in the post-project test found at the end of each unit. In those
cases, the items are meant to be ​summative​ assessment items.

These levels use a Code.org tool or programming environment. An instructions panel
explains any new content introduced in the level, provides a checklist of tasks to
complete, and may include starter code. Teachers can review their students’ code from
the Teacher Panel.

Enable students to develop skills by completing targeted tasks individually or in pairs.
Support them by directing them to available resources and helping them to develop
general coding strategies

http://studio.code.org/s/coursea

Teacher-facing curriculum — Course Overview
The teacher-facing course overview page (e.g., ​curriculum.code.org/csf/coursea​) is a hub for seeing all lesson plans for a
given course and includes the following:

Note that from this view, lessons are organized by concept chunk, and there are direct links to any materials needed in
the lesson.

28

 CS Fundamentals Curriculum Guide

http://curriculum.code.org/csf/coursea

Lesson Structure and Iconography
Lessons in CS Fundamentals are written for a wide variety of classrooms. A typical lesson is broken down with time
estimates, but the actual time will vary based on the age of your students, their background with the material, and their
interests. Teachers looking to complete our courses in less than the suggested time have also found success by looking
at clusters of related lessons together. See ​Concept Chunks​ above.

Types of Lessons in CS Fundamentals
The CS Fundamentals curriculum has four main types of lessons, which build in complexity and allow students to apply
their learning in different contexts. Those four lessons types are:

1. Unplugged.​ These lessons are done away from the computer and are often used to introduce a new concept in a
hands-on, tangible way.

2. Skill Building​. These lessons are done on the computer and give students structured practice with a new tool or
programming concept.

3. Application​. These lessons are done on the computer and give students space to apply learned concepts in
creative ways.

4. End-of-Course Project. ​These longer lessons are done both on and off the computer and provide an
open-ended space for students to bring together everything they’ve learned in the course into a single, creative
project.

These lesson types contribute to the flow of concept chunks, which were described on page 6. See below for an example
of a concept chunk from Course C as seen on Code Studio (left) and in the teacher-facing curriculum (right):

The following pages provide more details on each of these lesson types and how they manifest in concept chunks.

29

 CS Fundamentals Curriculum Guide

Concept chunk in Code Studio:

Concept chunk in teacher-facing Curriculum

Unplugged Lessons
We refer to lessons in which students are not working on a
computer as “unplugged.” Students will often work with pencil and
paper or physical manipulatives. These are intentionally placed
kinesthetic opportunities that help students digest complicated
concepts in ways that relate to their own lives. Often an unplugged
lesson sets the stage for a subsequent skill-building lesson
investigating the same concept on the computer. Both types of
lessons are vital pieces of the curriculum.

Unplugged lessons are particularly useful for building and
maintaining a collaborative classroom environment, and they are
useful touchstone experiences you can refer to when introducing
more abstract concepts. While these lessons sometimes involve
more advanced preparation, they provide a shared and concrete
context that can be referenced during other lessons. For a list of all
unplugged lessons covered in the CS Fundamentals curriculum
(plus a few extras!) visit: ​code.org/curriculum/unplugged

Tips for Effectively Teaching Unplugged Lessons:
❏ Don’t skip these activities! They’re often an essential introduction to new concepts.
❏ Teach lessons in the order they are written. The sequence is designed to scaffold student understanding.
❏ Help students identify the computer science concepts underlying the activities.
❏ Refer back to unplugged lessons to reinforce concepts in subsequent lessons.

30

 CS Fundamentals Curriculum Guide

https://code.org/curriculum/unplugged

Skill-Building Lessons
The majority of “plugged” or computer-based lessons in CS Fundamentals are skill building and are designed to help
students get hands-on practice with tools and concepts. On Code Studio, these lessons typically consist of ​practice
puzzles, ​videos​, ​prediction​ puzzles, and ​free play​ activities. You can read more about these Code Studio activity types
in the next section.

Skill building lesson plans typically have many of the same features as their unplugged counterparts. Lessons will begin
and end with discussions or activities that help motivate and synthesize learning. Key moments for you to check in with
your students are noted in lesson plans. Students will use a computer, but the ways students interact with each other and
your role as the teacher are still important considerations.

These puzzle progressions generally start with a sequence of practice puzzles that gradually increase until reaching a
challenge puzzle. There are often additional puzzles after the challenge that intentionally get easier to help build efficacy
and confidence at the end of the lesson.

Bridging Activities
Bridging activities connect our unplugged lessons to our skill building lessons in a
real and concrete way. They often exist as a method of turning an abstract
concept or idea learned through unplugged play into an actionable tool for the
upcoming puzzles.

In a given concept chunk that starts with an unplugged lesson, you will find a
bridging activity as the “warm up” in the first skill building lesson that follows. As
you become more comfortable with the curriculum, feel free to come up with your
own online/offline blends to keep the curriculum relevant to your classroom.

Tips for Effectively Teaching Skill-Building Lessons:
❏ “Plugged” doesn’t mean the computer is the teacher! In many ways, you will need to take a more active role in

checking student progress since it’s hard to know what’s happening when students are working on screens.
❏ Use warm ups, wrap ups, and suggested check-ins to ensure students are synthesizing concepts.
❏ Encourage students to work with one another to maintain the collaborative classroom culture established during

unplugged lessons.
❏ Highlight connections from the preceding unplugged lessons.

Skill-Building lesson example from Course C, “Loops” concept chunk

31

 CS Fundamentals Curriculum Guide

Application Lessons

While similar in appearance to our other online puzzles, application tasks are special in that they were designed to allow
students to apply what they have learned in a creative way.

These lessons typically walk students through the creation of a mini-project that will be unique for them based on their
own creative decisions. There are no right or wrong answers here! Unlike skill building lessons where student work is
typically validated for correctness automatically, there is no validation in these lessons. This is because the mini-project
work that students do in application lessons is much more open-ended. To determine if students are successfully applying
learned concepts, reviewing their code is essential.

Tips for Effectively Teaching Application Lessons:
❏ Consider completing the lesson’s mini-project yourself ahead of time. This can build empathy for the student

experience and help you to better understand the capabilities and limitations of the tool.
❏ Be sure to talk with the class to establish context and expectations for this type of lesson.
❏ Students may need to determine for themselves when they are ready for the next step in a mini-project. Stress the

importance of reading instructions in these lessons.

Application Lesson Appearance on Code Studio

Application lesson example from Course C, “Loops” concept chunk

End-of-Course Projects
Each course offers the opportunity for students to take what they’ve learned at the end of a lesson and put it together into
a unique project that represents their own creativity.

In Courses A-B, this takes the format of exercises that have multiple solutions. Course C takes students through a
progression to build a more complex program in which the students drive many of the decisions.

In Courses D-F, project development takes the stage. Here, students are encouraged to plan, build, revise, and present
projects of their own. Following a project from inception to delivery offers an inside look at the software development
cycle. These guided projects offer scaffolded rubrics for the benefit of both student and teacher.

32

 CS Fundamentals Curriculum Guide

Teacher-Facing Curriculum - Lesson Plans
Every lesson plan has a common structure designed to make it easy to find what you need. As you plan for a lesson, we
recommend starting with the overview, then reviewing the core activity to get a deeper sense of what will happen in the
lesson and how long it might take.

33

 CS Fundamentals Curriculum Guide

Iconography
Within lesson plans you’ll notice a number of icons and other kinds of callouts. These are intended to give context about
what “mode” you should be operating in for each part of the lesson. Sometimes you speak directly to the students, and
other times you need to understand the goal of a discussion or give guidance during an activity.

Interactive Code Studio View
Lesson plans give you an interactive
view into all of the text content and
instructions students see on the
platform.

With this view, you can quickly
browse through what students see
for each level in the lesson without
having to step through each level on
Code Studio.

This should greatly speed up your
preparations for class or serve as
fast way to remind yourself what’s in
each lesson.

34

 CS Fundamentals Curriculum Guide

Code Studio - Lesson Iconography
Once students navigate to lesson levels on Code Studio, a new set of iconography is used to communicate about some
types of levels. Those icons are listed below, along with a brief description of what they represent and how you might use
them as a teacher.

You can alway see how levels are classified in a lesson on the course overview page (e.g.,
studio.code.org/s/coursea​) by selecting the expanded view (see the icon to the left)

35

 CS Fundamentals Curriculum Guide

Practice

Practice puzzles are the most common type of online activity found in CS Fundamentals lessons.
Students are given explicit instructions
about a task to perform and provided with
a toolbox of programming commands and
hints. These puzzles are automatically
validated which means that students
receive instant feedback about the
accuracy of their code. Students can
typically just be expected to work through
these progressions, either with a partner or at their own pace.

Challenge

Most of our skill building lessons contain one “challenge” puzzle near the end of the lesson series.
Challenge puzzles are intended to inspire students to try new things with the concepts they are
learning. It will test their persistence, highlight misconceptions, and hopefully lead them to the “ah-ha”
moment that educators love. If the lesson you are teaching contains a challenge puzzle, consider

letting students know in advance.
Encourage them to persevere and
understand that it may take additional
time and effort to complete these tasks.
In case it is needed, all challenge puzzles
have a “Skip” button which allows
students to move on. Be sure to set
expectations with your class around how
to engage with this type of activity.

Video
All CS Fundamentals courses feature great videos designed to introduce tools or to help explain new
concepts. Featuring a diverse set of speakers who also share their own connections to the growing
field of computer science, these videos are meant to be viewed by students. Depending on the
lesson and your classroom organization, you may wish for students to watch them on their own or
show them to the entire class all at once.

Prediction

Instead of writing or changing code, as they do in practice and challenge puzzles, in prediction
puzzles students are asked to read a provided program and answer a question about it. The question
must be answered before the student
may press the “Run” button. While it is
possible to use these questions as a
form of assessment, keep in mind that
they are often placed at the start of a
lesson as a way to get students
questioning things before they are even
formally shown how something new
works.

http://studio.code.org/s/coursea

36

 CS Fundamentals Curriculum Guide

Free-Play

Many of our skill-building and application lessons end with a free-play level. This is not only a great
place to point students who are progressing quickly, but a place for all students to really express their

creativity. While students are not
actually required to write any
code in these levels, doing so
will allow them to apply what
they have learned in a way that
is more meaningful to them.
Encourage your students to take
their time here.

Mini-Project

Mini-projects are made up of a series of online activities in which students will write code to build
something gradually over the course of the main activity of a lesson. These activities
look similar to practice puzzles but have a few important differences. Most
importantly, any code that you write in one bubble is carried over to the other bubbles
within the same mini-project progression. This means that students (and
the teacher) will see the same program when clicking ahead (or behind)
within the project. Because these activities are designed to encourage
creativity, expect each student to create something a little different. The
open-ended nature of these projects means that Code Studio will not
offer immediate feedback about the correctness of the student’s work.
Pressing the orange “Finish” button will allow the student to move on to
the next step and turn the associated bubble at the top of Code Studio
green.

Lesson ​ ​Extras

Because of the structure of concept chunks and the flow between unplugged, skill-building, and
application lessons, it is usually ideal to keep the entire class together on the same lesson instead of
letting students skip ahead to new concepts. For that reason, we have provided an area at the end of
each lesson where students can use the concepts that they’ve learned in new and interesting ways.
These puzzles are considered “optional.” They are a sandbox to keep students who finish early
challenged and working on tasks relevant to the core CS concept being taught. In addition, the
Lesson Extras can be used to add an additional day onto skill-building lessons, offering the
opportunity for students to come back and create personal and authentic projects with their newest
concepts.

Code Studio Debugging Features
Some of our puzzles feature special tools to help students debug code on their own.

37

 CS Fundamentals Curriculum Guide

Debugging Feature How It Works

Step Button

Found in Maze puzzles
(Includes skins: Angry Birds, Ice Age,
Plants vs. Zombies)

With the “Step” button, it is possible to go through a program block by block to
see what happens each step of the way. This is a helpful tool when the code
moves too quickly to understand where things get off course.

To use the “Step” button, simply click on “Step” instead of “Run.” The code will
run exactly one block before coming to a rest again. To continue through the
code, keep pressing “Step” until you have completed your program or found
your bug.

Speed Slider

Found in Artist puzzles
(Includes Frozen skin)

In Artist puzzles, the “Step” button is replaced by a speed slider. For a similar
effect, try moving the slider to the far left and watching the artist go through
each step very slowly.

Implementation and Planning
This section offers suggestions for implementing a CS Fundamentals course in an elementary school classroom. CS
Fundamentals courses are designed for flexibility in implementation and have been successfully used in a variety of
formats, including in the classroom alongside other subjects, as a rotating special, in computer lab time, or as stations.

Lesson Pacing
In general, all students should move lesson to lesson at a pace set by the teacher. This is easy to do in a teacher-led
unplugged lesson but can be trickier in skill-building and application lessons in which students move through activities at
different speeds. The two challenges here are in recognizing when a class is ready to move on and knowing how to make
sure all students are working on something appropriate for them within the same concept chunk.

Unplugged Lessons: ​These lessons involve the full class learning a concept together and are a great way to kick off a
concept together as a whole class.

Skill-Building Lessons: ​These lessons contain optional lesson extras as well as challenge puzzles that students can
actually choose to skip. If a student skips a challenge puzzle or lesson extra but moves through the rest of the lesson
quickly, encourage them to go back and try the challenge and lessons extras. It is not necessary for all students to
complete all challenges and lesson extras before moving the class onto the next lesson. If a student’s progress shows
that they haven’t finished a full lesson yet, consider seeing if they are stuck at a challenge puzzle or something more basic
and responding appropriately. For some concept chunks there are multiple skill-building lessons. When this is the case, it
is not required that all students do every level of every skill-building lesson. You should use your judgement about when
students are ready to move on to the application lessons or to the next concept chunk.

Application Lessons:​ Due to the more open-ended nature of these lessons, students can actually pass some levels in
these lessons just by clicking “Finish.” This should be discouraged as these lessons are one of the best ways for students
to demonstrate their learning. They are also a great place to encourage creativity and give students space to apply the
concepts they’ve learned in new ways. If some students move through an application lesson quickly, help them brainstorm
ideas or encourage them to get feedback from peers.

Projects:​ In addition to the open-ended project lesson at the end of most courses, it is also possible for students to create
a new project at any time by clicking the “Create” button in the top right corner of Code Studio. If a student has already
shown good understanding of a concept, consider having them build a new project using what they know rather than just
moving onto the next lesson ahead of the class.

Scheduling The Lessons
The simplest and easiest way to schedule a CS Fundamentals lesson is to dedicate one 45-minute period to each lesson.
However, if this does not seem realistic for your situation, it is possible to teach the courses, even with less time. In the
CS Fundamentals Curriculum Overview section, we explored how Courses A-F are further divided into concept chunks.
These groups of lessons are connected through shared concepts. However, you are not required to teach every lesson or
even every chunk. If a concept chunk consists of three or more lessons, consider grouping some lessons into one class
period. For example, it may be possible to teach an abridged version of an unplugged lesson in 20 minutes, or you may
give students a choice about which skill-building lesson to complete first rather than giving everyone time to complete all
skill-building lessons. If you do need to shorten things, be sure to end with an experience in which students get to take
ownership of something they make themselves, either in an application lesson or a project.

38

 CS Fundamentals Curriculum Guide

Approach to Teaching in Common Classroom Scenarios
Here are implementation tips for common situations in elementary schools:

Everyone doing the lesson together
Keeping the class together on the same lesson helps to build a sense of community and prevents struggling students from
feeling left behind by their peers. Make sure students feel empowered to travel at their own pace within a lesson and
consider what you want to do with students who finish early. See the “lesson pacing” section above for more details and
tips.

1:1 computers
Even if you have 1:1 computers, consider grouping students up for pair programming. This setup allows students to gain
insight into the problem-solving processes of their peers while helping them to develop collaboration and communication
skills.

Always in the computer lab
If your class is regularly held in a computer lab, look for rooms to “visit” for unplugged lessons (like the library or the gym).
This will give students room to spread out and feel like they are learning authentically rather than trying to “make do” in
the available space.

Only a few computers
Some classrooms have a small number of computers set up in one area, and teachers use these as activity centers. This
can be still effective once the class has already gone through the unplugged lessons for a concept together.

Limited time
If you are short on time, choose a concept and teach it thoroughly. In elementary school, the main goal is to teach
students that they are capable of learning computer science. If you ditch a deep dive on concepts in favor of a shallow
introduction, students might be left feeling as if they don’t understand any of it.

Guide for CS Fundamentals teachers during school closures
In response to school closures due to COVID-19 pandemic, many Code.org classrooms are moving to using our CS
Fundamentals courses in a virtual setting or giving their students activities to keep learning at home. Note that the
following guidance also applies to longterm school closures caused by other incidents schools may face (e.g., inclement
weather).

Resources to keep learning
Computer science is a great way to add some fun to extended time at home. However, the learning will take a different
form when some kids are engaged regularly, some have only a little time, some have computers, and some don’t.
Rather than trying to teach a synchronous class remotely, many teachers will be giving elementary school students
activities they can do to maintain their interest as well as providing structure during their time at home.

We are compiling a list of activities on ​code.org/athome​ that are ideal to share with students or families interested in doing
some computer science on their own. This list includes activities for students with no computers or internet access.

Teaching CS Fundamentals Remotely
We designed the lessons in CS Fundamentals for use in a classroom with an actively engaged teacher, but many lessons
can adapt well to at-home learning. Learning with CS Fundamentals does require an internet-connected device with a
modern browser, something we realize not all students can access right now. We have modifications available for remote
teaching.

39

 CS Fundamentals Curriculum Guide

https://code.org/athome

Modifications for Virtual and Socially-Distanced Classrooms

 Each of Courses A-F has a modifications document, below, designed to help you create a plan to
implement as many of the lessons as possible for your situation. Suggestions are provided for teacher preparation steps,
teaching strategies, callouts for tricky lessons, and specific modifications for these lessons.

Modification documents are available on ​CSF course landing pages​.

You can track your ​students’ progress​ to see where they are. You may be able to use resources like video conferencing
or email to assist students and provide feedback.

Where can I get help?
You are highly encouraged to share any questions or insights on our ​CS Fundamentals Forum​ where you can connect
with other teachers. You can also email us at support@code.org. We are here to help!

We also recommend you consider ​CSTA's Resources to Support Teaching During COVID-19​ for an extensive set of
options for continuing to teach computer science during school closures.

40

 CS Fundamentals Curriculum Guide

https://curriculum.code.org/csf-20/
https://support.code.org/hc/en-us/articles/115000693231-Viewing-student-progress
https://forum.code.org/t/supporting-cs-fundamentals-students-during-school-closures/32456
https://csteachers.org/page/csta-compiled-resources-to-support-teaching-during-covid-19/

Tech Requirements and Required Materials
Technical Requirements
A computing device and an Internet connection

We work hard to build an environment that supports all modern web browsers on desktops and mobile devices. This
includes Internet Explorer 11+ and the latest versions of Firefox, Chrome, Safari, and Edge.

Our instructional videos may be affected depending on your school's internet filters. If YouTube is blocked at your school,
our video player will attempt to use our non-YouTube player instead. For more details about the IT requirements for
accessing and playing our embedded videos, see our IT requirements page at ​code.org/educate/it​. We’ve made all of our
videos available for download using a link located in the bottom corner. If all fails, some videos have a “Show Notes” tab
that provide a storyboard equivalent of the video.

Required Materials / Supplies
One potentially significant cost to consider when teaching this course is printing. Many lessons have handouts that are
designed to guide students through activities. While it is not required that all of these handouts be printed, many were
designed to be printed, and we highly recommend printing when possible.

Beyond printing, some lessons call for typical classroom supplies and manipulatives, such as student journals, poster
paper, markers, colored pencils, scissors, scrap paper, glue or tape.

The following items are called for in specific lessons as listed:

*These items can easily be re-used between multiple classes

41

 CS Fundamentals Curriculum Guide

Course Lesson Materials
Course A Marble Run (optional activity) Kid friendly marbles or round cereal (1-5/group)*

Course C

Lesson 3: My Robotic Friends Jr. Plastic cups (10/group of 2-3)*

Lesson 7: Creating Art with Code Optional - Protractors (1/student)

Lesson 8: Binary Bracelets Markers. Optional – 18 black/18 white beads, 1 pipe cleaner
per student

Lesson 9: My Loopy Robotic Friends Jr. Paper cups (20/group of 4)

Course D

Lesson 7: Dance Party Optional - Headphones (1/student)

Lesson 10: Conditionals with Cards Deck of cards or something similar (1/group of 4-6)*

Lesson 16: Binary Images Optional - Groupings of opposite items to display to students

Course E Lesson 10: Digital Sharing Smartphone or tablet

Course F

Lesson 6: The Power of Words Colored Pencils, string the length of the classroom

Lesson 7: Envelope Variables Envelopes (1-4/group of 2-4)

Lesson 14: For Loop Fun Dice (3 dice/group of 2-4)*

https://code.org/educate/it

Getting Help
The curriculum is completely free for anyone to teach anywhere. For
support, click on the question mark in the upper right-hand corner of
the website.

Here, you’ll find our “Help and support​”​ forum where you can email us
or find how-to articles. You’ll also see a link to our “Teacher
community” forums where you can connect to other teachers for
support, teaching tips, or best practices.

When you’re in a puzzle, you’ll see an additional “Report a problem”
link for that puzzle. Thank you for helping us find and fix any issues.

Thanks and Acknowledgements
Launched in 2013, Code.org is a non-profit organization dedicated to expanding access to computer science and
increasing participation by women and underrepresented students of color. Our vision is that every student in every
school has the opportunity to learn computer science. We believe computer science should be part of core curriculum,
alongside other courses such as biology, chemistry, or algebra.

Code.org increases diversity in computer science by reaching students of all backgrounds where they are — at their
skill-level, in their schools, and in ways that inspire them to keep learning. Read about our efforts to increase diversity in
computer science at ​code.org/diversity​. In order to support this vision of diverse and meaningful access to computer
science, Code.org has developed a full pathway of learning opportunities that span K-12. The CS Fundamentals
curriculum is specifically designed to meet the needs of elementary school students and teachers along that pathway.

As always, it is thanks to our generous donors that we were able to develop and offer this curriculum at no cost to
schools, teachers, or students: Microsoft, Infosys Foundation USA, Facebook, Omidyar Network, Google, Ballmer Family
Giving, Ali and Hadi Partovi, Bill Gates, The Bill and Melinda Gates Foundation, BlackRock, Jeff Bezos, John and Ann
Doerr, Mark Zuckerberg and Priscilla Chan, Quadrivium Foundation, Amazon Web Services, The Marie-Josee and Henry
R. Kravis Foundation, Reid Hoffman, Drew Houston, Salesforce, Sean N. Parker Foundation, Smang Family Foundation,
Verizon.

42

 CS Fundamentals Curriculum Guide

https://code.org/diversity

Appendix A: Worksheets for Intro
Workshop

This appendix contains all necessary handouts for lessons that could be explored in the Intro Workshop. Consult the table
of contents below for page numbers:

43

 CS Fundamentals Curriculum Guide

Lesson Planning Guides

Unplugged Lesson Implementation Planning Guide 44 - 45

Plugged Lesson Implementation Planning Guide 46 - 47

Unplugged Lesson Handouts

Course Lesson Page Number

Course A

A.3 - Happy Maps 48 - 51

A.7 - Happy Loops 52 - 54

A.11 - The Big Event Jr. 55

Course B
B.2 - Move It, Move It 56

B.6 - Getting Loopy 57

Course C

C.3 - My Robotic Friends Jr. None

C.9 - My Loopy Robotic Friend Jr None

C.14 - The Big Event 55

Course D

D.1 - Graph Paper Programming 58 - 59

D.3 - Relay Programming 60

D.11 - Conditionals with Cards 61

Course E

E.5 - Simon Says None

E.8 - Private and Personal Information None

E.14 - Functions: Songwriting 62

Course F
F.7 - Envelope Variables 63 - 64

F.14 - For Loop Fun 65 - 66

44

 CS Fundamentals Curriculum Guide

Unplugged Lesson Implementation Planning Guide

Course _______________ Lesson ________

Make a Plan

Goal
You have thought about and made a detailed plan for how you might teach an ​unplugged lesson​ in a way
that leverages the CS Fundamental instructional practices and supports students

What’s happening Where can this happen in the lesson?

Instructional approaches to
use in this lesson
What instructional techniques or
approaches do you want to be sure to
use in this lesson? Where do you want to
use them?

Role as the teacher
When/where in the lesson do you want
the whole class to discuss a topic? What
role do you plan to take and when?

Classroom environment​ ​and
student interaction
When do you want students to interact
during this lesson? What should that look
like?

45

 CS Fundamentals Curriculum Guide

What’s happening Where can this happen in the lesson?

Assessing student learning in
the lesson
How can you assess if students have
learned what they need to learn during
this lesson?

Connecting to computer
science
Where do you think students might need
a push to see the connection between
this unplugged activity and computer
science? How do you plan to support
that?

Making connections
Where is there space in this lesson to
make connections to the real world/other
things students are learning in school?

46

 CS Fundamentals Curriculum Guide

Plugged Lesson Implementation Plan

Course _______________ Lesson ________

Make a Plan

Goal
You have thought about and made a detailed plan for how you might teach the lesson in a way that
leverages the CS Fundamental instructional practices and supports students

What’s happening Where can this happen in the lesson?

Connecting to Unplugged
lesson
How will you scaffold and support
students in seeing the connection
between the previous unplugged lesson
and this plugged lesson?

Instructional approaches to
use in this lesson
What instructional techniques or
approaches do you want to be sure to
use in this lesson and where do you want
to use them?

Role as the teacher
When/where in the lesson do you want
the whole class to discuss a topic? What
role do you plan to take and when?

47

 CS Fundamentals Curriculum Guide

What’s happening Where can this happen in the lesson?

Classroom environment​ ​and
student interaction
When do you want students to interact
during this lesson? What should that look
like?

Assessing student learning in
the lesson
How can you assess if students have
learned what they need to learn during
this lesson?

Supporting debugging
Where do you think students might need
to engage in debugging during this
lesson (which levels/activities)? How can
you support them with that debugging?

Making connections
Where is there space in this lesson to
make connections to the real world/other
things students are learning in school?

Course A Lesson 3 - Happy Maps

48

 CS Fundamentals Curriculum Guide

Course A Lesson 3 - Happy Maps

49

 CS Fundamentals Curriculum Guide

Course A Lesson 3 - Happy Map​s

50

 CS Fundamentals Curriculum Guide

Course A Lesson 3 - Happy Maps

51

 CS Fundamentals Curriculum Guide

Course A Lesson 7 - Happy Loops

52

 CS Fundamentals Curriculum Guide

Course A Lesson 7 - Happy Loops

53

 CS Fundamentals Curriculum Guide

Course A Lesson 7 - Happy Loops

54

 CS Fundamentals Curriculum Guide

Course A Lesson 11 and Course C Lesson 14 - The Big Event (Jr.)

55

 CS Fundamentals Curriculum Guide

Course B Lesson 2 - Move It, Move It

56

 CS Fundamentals Curriculum Guide

Course B Lesson 6 - Getting Loopy

57

 CS Fundamentals Curriculum Guide

Course D Lesson 1 - Graph Paper Programming
Choose one of the images below. Don’t let your partner see which one you pick!

 Play Again!

58

 CS Fundamentals Curriculum Guide

 Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

1) ​Write a program.​ ​(Use → ← ↑ ↓)

2) ​Trade this worksheet with a partner.

3)​ Draw! Follow your partner’s program:

Step 1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

☆

1. ​Write a program. (Use → ← ↑ ↓)

2) ​Trade this worksheet with a partner.

3)​ Draw! Follow your partner’s program:

Step 1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

☆

Course D Lesson 1 - Graph Paper Programming Assessment

59

 CS Fundamentals Curriculum Guide

Course D Lesson 3 - Relay Programming Assessment

60

 CS Fundamentals Curriculum Guide

Course D Lesson 11 - Conditionals with Cards

61

 CS Fundamentals Curriculum Guide

Course E Lesson 14 - Functions: Songwriting

62

 CS Fundamentals Curriculum Guide

Course F Lesson 7 - Envelope Variables

63

 CS Fundamentals Curriculum Guide

Course F Lesson 7 - Envelope Variable

64

 CS Fundamentals Curriculum Guide

Course F Lesson 14 - For Loop Fun

65

 CS Fundamentals Curriculum Guide

Course F Lesson 14 - For Loop Fun

66

 CS Fundamentals Curriculum Guide

Appendix B: Worksheets for Deep

Dive Workshop

If you are a US teacher and you'd like to attend a free training on our K-5 Computer Science curriculum, you can find links
to local workshops by visiting ​https://code.org/professional-development-workshops​.

67

 CS Fundamentals Curriculum Guide

Scavenger Hunts

Creating and managing sections 68 - 70

Navigating and accessing course materials 69

Viewing and assessing student work 70

Lesson Planning Guides

Lesson Implementation Planning Process 71 - 72

Lesson Implementation Plan Template 72 - 73

Implementation Unconference 74

https://code.org/professional-development-workshops

Session: ​Scavenger​ Hunt
Instructions for this session
The goal of this session is to give you space to learn about pieces of the website and the organization of Code.org
resources with which you might not currently be familiar. This activity is broken into three scavenger hunts that progress in
order (e.g., you need to know the things in hunt 1 before moving on to hunt 2). If you have some comfort navigating the
code.org resources already, feel free to start the hunt on whatever category covers topics with which you are unfamiliar. If
you feel very comfortable with all topics, partner up with someone new and support them!

Resources
All of the topics explored in this scavenger hunt have support articles associated with them. If at any time you want help
finding answers, see the support resources linked at the top of the shared notes (“code.org resources”) or visit
support.code.org​ ​and use the search box to find what you need.

68

 CS Fundamentals Curriculum Guide

1. Creating and managing sections:

● Creating a classroom section
● Add students to your section
● Changing a section’s assigned

course
● Moving students between

sections

2. Navigating and accessing course
materials:

● Hiding and showing lessons for

students
● Accessing lesson plans

3. Viewing and assessing student
work:

● Viewing student progress and

work
● Viewing sample solutions

1. Creating and managing sections

Category What to Find Answer / notes to self

Creating a
classroom

section

There are 4 types of account logins to choose from
when creating a section. What are they?

When might you use each of the login types?

When setting up a classroom section, there is an
option to enable “lesson extras.” What are those?

Pause and practice:​ If you haven’t already, go create
a section of your own for your students using the
login type and course that best suits their needs.

Add students
to your
section

Which login types require you to add students to the
section yourself?

For “personal logins” (in which students use their
own email addresses), where do students need to
go to type in your section code?

BONUS​: Where can you see all of the sections you
have JOINED on code.org?

http://support.code.org/

69

 CS Fundamentals Curriculum Guide

Changing a
section’s
assigned

course

If you decide you want to teach a section of students
a CS Fundamentals course that is different from what
you originally assigned it, what can you do?

When you assign a new CS Fundamentals course to
a section, what happens under “my courses” on the
dashboard for you and the students in that section?

Pause and Practice​: If you haven’t already, grab a
buddy and have them join one of your sections.
Once they’ve joined, practice changing the assigned
course and see what happens on their dashboard.

Moving
students
between
sections

How do you move students from one classroom
section to another?

Do you have to move students one at a time, or can
you move multiple students at once?

Pause and Practice​: If you haven’t already, move
your partner to a different section and see what
happens.

2. Navigating and Accessing Course Materials

Category What to Find Answer / notes to self

Hiding and
showing

lessons (for
students)

Where do you go to hide and show lessons? How
does it work?

When you show and hide lessons, are all of your
students impacted or just some?

Is it possible to hide lessons for someone with a
teacher account?

Pause and Practice​:​ ​If you haven’t already, practice
hiding and showing lessons for one of your sections.
As a reminder, you can always toggle on ‘student
view’ to see what the course looks like when
lessons are hidden.

Accessing
Lesson
Plans

How do you access lesson plans for CS
Fundamentals? (There are two ways.)

Pause and Practice​:​ ​If you haven’t looked over the
curriculum page (which houses all of the lesson
plans for a given course), take a minute or two and
check in out now.

70

 CS Fundamentals Curriculum Guide

3. Viewing and Assessing Student Work

Category What to Find Answer / notes to self

Viewing
student

progress and
work

What are the two ways to view student work on
code.org?

Pause and Practice​: Do you have any students in
your sections who have made progress that you can
view?

Viewing
sample

solutions

Where can you find the ‘see a solution’ button on
programming levels?

How do you exit the solution once you’re looking at
it?

Pause and Practice​: If you haven’t already, try out
viewing a sample solution for yourself!

Session: Lesson Implementation Planning

71

 CS Fundamentals Curriculum Guide

Lesson Implementation Planning Process

Step 1

Choose what type of lesson you want to plan today. Here are recommendations for what type of
lesson to plan, based on your experience level:

Fairly new​ to CS Fundamentals? We recommend you choose one of these lesson types, focusing on
the type you haven’t spent much time planning in the past:

● Unplugged​ — explore concepts away from the computer
● Skill-Building​ — the style of lesson we saw in the model lesson earlier

Have you been teaching CS Fundamentals ​for a while​?​ ​We recommend you plan
● Application​ — levels build off of each other up to a final product (typically a game)

Have a ​ton of experience​ with CS Fundamentals? We recommend you plan
● End of Course projects​ — entirely student directed projects about a topic of the students’

choice

Step 2

Choose which course you’re going to explore today, based on the grades you teach:

If you teach a ​single grade​, choose the course associated with that grade.
If you teach CS Fundamentals to ​multiple grades​, choose which course to explore today based on
considerations like:

● Which course you have the least experience with
● Which grade you spend the most time with

Step 3

Find your lesson recommendation below by matching up the lesson type and course you want to
explore:

 Unplugged Plugged —
Skill-Building

Plugged —
Application

Plugged — ​End of
Course Projects

Course A
Kindergarten

A.7 - Happy Loops
A.10: Ocean Scene
with Loops

A.12: On the Move
with Events

There are currently no open
ended projects written into
courses A-B, but if you’re
interested in developing an
open ended project you can
start with the materials in
lesson C.18

Course B
First Grade

B.10 - The Right App
B.9: Drawing
Gardens with Loops

B.12: A Royal Battle
with Events

Course C
Second
Grade

C.8: Binary
Bracelets

C.13: Sticker Art with
Loops

C.16: Chase Game
with Events

C.18 - End of Course
Project

Course D
Third Grade

D.16: Binary Images
D.17: Binary Images
with Artist

D.6 - Build a Star
Wars Game

D.19 - End of Course
Project

Course E
Fourth Grade

E.14 - Songwriting
E.17: Functions with
Artist

E.13 - Nested Loops
in Frozen

E.19 - End of Course
Project

Course F
Fifth Grade

F.7 - Envelope
Variables

F.8 - Changing
Variables with Artist

F.18 - Virtual Pet
F.19 - End of Course
Project

72

 CS Fundamentals Curriculum Guide

Step 4

Access your lesson plan materials and read the lesson

● All lesson plans are available at curriculum.code.org/csf
● Access all digital materials via the code.org website: code.org > course catalog> “learn more”

on elementary school tile > scroll down to course tiles.

Step 5

Read your lesson and prepare to make an implementation plan.

Once you have read the lesson plan, you are ready to use the Code.org ​Lesson Implementation
Planning Guide​ as a template to help you think about how you will teach this lesson.

CS Fundamentals Lesson Implementation Plan Template

Course _______________ Lesson ________

Make a Plan

Goal
You have thought about and made a detailed plan for how you might teach the lesson in a way that
leverages the CS Fundamental instructional practices and supports students

What’s happening Where can this happen in the lesson?

Instructional approaches to
use in this lesson
What instructional techniques or
approaches do you want to be sure to
use in this lesson and where do you want
to use them?

Role as the teacher
When/where in the lesson do you want
the whole class to discuss a topic? What
role do you plan to take and when?

https://docs.google.com/document/d/1HjtrRngmi7ZEj4sJIpjaUb_9O9JBG5JuXg5ztA-hNw0/copy
https://docs.google.com/document/d/1HjtrRngmi7ZEj4sJIpjaUb_9O9JBG5JuXg5ztA-hNw0/copy

73

 CS Fundamentals Curriculum Guide

What’s happening Where can this happen in the lesson?

Classroom environment​ ​and
student interaction
When do you want students to interact
during this lesson? What should that look
like?

Assessing student learning in
the lesson
How can you assess if students have
learned what they need to learn during
this lesson?

Supporting debugging
Where do you think students might need
to engage in debugging during this
lesson (which levels/activities?) How can
you support them with that debugging?

Making connections
Where is there space in this lesson to
make connections to the real world/other
things students are learning in school?

Session: Implementation Unconference

Reflect and write

74

 CS Fundamentals Curriculum Guide

How much of CS
Fundamentals do you
want to teach to your
students?

Now that we've spent
more time digging into CS
Fundamentals, what is top
of mind as a barrier for
making CS Fundamentals
work in your classroom?

Think both in terms of getting as
far as you might like and in terms
of making those lessons as
effective as possible.

What goals do you have
for your CS Fundamentals
Class?

Appendix C: Notes

Use the following pages to jot down questions, ideas, and
reflections as you engage with curriculum at workshops
and while teaching.

75

 CS Fundamentals Curriculum Guide

76

 CS Fundamentals Curriculum Guide

77

 CS Fundamentals Curriculum Guide

78

 CS Fundamentals Curriculum Guide

