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1 INTRODUCTION

This document contains a discussion on the questions for Assignment 3 for COS4852 for 2023.

2 Assignment 3

Question 1

• https://byjus.com/maths/bayes-theorem/

• https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/

• https://en.wikipedia.org/wiki/Sensitivity_and_specificity

In the world we are experiencing now, people have become a lot more aware of medical test results.
One question that most people would want to be answered: How accurate is a test for an infection?

There are terms often used in medical test results, and are vital in correctly interpreting a test result:

1. Prevalence: the ratio of the total population who is infected.

2. True positive (TP): the ratio of the total tests that are accurately labelled as positive. This is
dependent on the prevalence.

3. True negative (TN): the ratio of the total tests that are accurately labelled as negative. This is
dependent on the prevalence.

4. Sensitivity: (true positive rate TPR) the ratio of positive tests that are accurately labelled as
positive. This is independent of the prevalence.

5. Specificity: (true negative rate TNR) the ratio of negative tests that are accurately labelled as
negative. This is independent of the prevalence.

6. Positive Predictive Value (PPV): the probability of an infection given a positive test result.

7. Negative Predictive Value (NPV): the probability of no infection given a negative test result.

Here is a link that will provide more clarity on these terms:

• https://microbenotes.com/sensitivity-specificity-false-positive-false-negative/

Consider the data on a medical test for SUPERBUG:
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1. Out of every 10 000 people with a record of possible symptoms, more or less 100 people were
diagnosed with SUPERBUG. These are confirmed cases, based on a combination of doctors’
diagnoses, CT-scans, several different tests, and post mortem analyses.

2. It is known that for this test, 10 out of 100 positive test results are incorrect. This is the inverse
sensitivity of the test.

3. It is known that for this test, 10 out of 50 negative test results are incorrect. This is the inverse
specificity of the test.

Question 1(a)

You have just been tested for SUPERBUG, but are still waiting for your results. Obviously you will
want to know what a positive or negative result will tell you about the likelihood that you have been
infected with SUPERBUG, so that you can decide how to deal with the result.

Given the data above:

1. Define the variables you will use in your calculations.

2. Calculate the prevalence of SUPERBUG.

3. Calculate the sensitivity and specificity of the test.

4. Calculate the inverse sensitivity and inverse specificity of the test.

5. Calculate the false positive and false negative rate for the test.

6. Calculate the four prior probabilities, using your variable definitions.

7. Use Bayes’ theorem to calculate the PPV.

8. Use Bayes’ theorem to calculate the NPV.

9. Explain why the probabilities come out this way.

10. Explain what would cause these probabilities to change.

11. What do these results mean in practice.

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail
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Discussion on Question 1(a)

Define the variables. Let:

Bug ← a person is infected with SUPERBUG
¬Bug ← a person is not infected with SUPERBUG

Pos ← a positive test result
Neg ← a negative test result

= ¬Pos

The actual prevalence (base rate) is unknown. We can only know that number if everybody is tested,
with a test that is 100% accurate, and everybody is tested in a very short space of time, or everybody
get retested at short intervals. There is no test that is 100% accurate and mass testing is very
expensive and complicated. We can therefore only use the frequency of the number of confirmed
positive cases against the population size. This will be our best estimate for prevalence. Since we
were given a population of 10 000, we will use this number as a convenient population sample to
calculate the ratios.

P(Bug) ← prevalence
≈ 100/10 000

= 0.01

and therefore:

P(¬Bug) ← inverse prevalence
= 1− 0.01
= 0.99
= 9 900/10 000

The known sensitivity and specificity tells us that:

P(Pos|Bug) ← sensitivity
= (100 − 10)/100

= 0.9
= 90/100

P(Neg|¬Bug) ← specificity
= (50 − 10)/50

= 0.8
= 7 920/9 900

5



We can also write down their inverses:

P(Neg|Bug) ← 1− P(Pos|Bug)
= 1− 0.9
= 0.1
= 10/100

P(Pos|¬Bug) ← 1− P(Neg|¬Bug)
= 1− 0.8
= 0.2
= 1 980/9 900

Therefore, of the 100 infected people (out of the population of 10 000), 90 get positive results,
and 10 get negative results. Of the 9 900 people not infected (out of the population of 10 000),
0.8× 9 900 = 7 920 get negative results, and 9 900− 7 920 = 1980 get positive results. Therefore
90 + 1 980 = 2 070 came back positive, and 7 920 + 10 = 7 930 came back negative.

We can also now write down the following probabilities:

True positive ← ratio of all tests correctly labelled as positive
= 90/10 000

= 0.009
True negative ← ratio of all tests correctly labelled as negative

= 7 920/10 000

= 0.792
False positive ← ratio of all tests incorrectly labelled as positive

= 1 980/10 000

= 0.198
False negative ← ratio of all tests incorrectly labelled as negative

= 10/10 000

= 0.001

We can represent these values in table form, as shown in Tables 1 and 2. Figure 1 shows this
visually, but the small ratios make this not so easy to see. Figure 2 shows another set of ratios, where
the prevalence becomes 25%, which gives a better idea. As an exercise, repeat the calculations for
a prevalence of 25%, to see if you can get the same numbers as in the figure.

Bug ¬Bug totals
Pos 90 1980 2070
Neg 10 7920 7930

totals 100 9900 10 000

Table 1: Ratios (out of 10 000) for SUPERBUG and it’s test.
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Bug ¬Bug totals
Pos 0.009 0.198 0.207
Neg 0.001 0.792 0.793

totals 0.010 0.990 1.000

Table 2: probabilities for SUPERBUG and it’s test.

(+)inf = 100(+)inf = 100

(-)inf = 9900(-)inf = 9900

infectionsinfections

Tpos = 90Tpos = 90
Fneg = 10Fneg = 10

Fpos = 1980Fpos = 1980

Tneg = 7920Tneg = 7920

pos = 2070pos = 2070

neg = 7930neg = 7930

teststests

Tpos = 90Tpos = 90

Fpos = 1980Fpos = 1980

Fneg = 10Fneg = 10

Tneg = 7920Tneg = 7920

1000010000

sensitivity = 0.9sensitivity = 0.9

specificity = 0.8specificity = 0.8

prevalence = 0.01prevalence = 0.01

population = 10000population = 10000

Figure 1: Bug test ratios shown visually for a prevalence of 0.01.

7



(+)inf = 2500(+)inf = 2500

(-)inf = 7500(-)inf = 7500

infectionsinfections

Tpos = 2250Tpos = 2250

Fneg = 250Fneg = 250

Fpos = 1500Fpos = 1500

Tneg = 6000Tneg = 6000

pos = 3750pos = 3750

neg = 6250neg = 6250

teststests

Tpos = 2250Tpos = 2250

Fpos = 1500Fpos = 1500

Fneg = 250Fneg = 250

Tneg = 6000Tneg = 6000

1000010000

sensitivity = 0.9sensitivity = 0.9

specificity = 0.8specificity = 0.8

prevalence = 0.25prevalence = 0.25

population = 10000population = 10000

Figure 2: Bug test ratios shown visually for a prevalence of 0.25.

8



COS4852/A3

What we cannot immediately calculate, are the following:

P(Bug|Pos) ← chance of having the bug given a positive test
P(Bug|Neg) ← chance of having the bug given a negative test

P(¬Bug|Pos) ← chance of not having the bug given a positive test
P(¬Bug|Neg) ← chance of not having the bug given a negative test

Bayes’ rule can be used to calculate these probabilities, and is expressed using the prior (known)
probabilities P(A), P(B), and the probability of B given that A is true, P(B|A). Bayes’ theorem gives
us the probability of A given B, P(A|B) as:

P(A|B) =
P(A)P(B|A)

P(B)
where

P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)

To summarise the known probabilities:

P(Bug) = 0.01
P(¬Bug) = 0.99

P(Pos|Bug) = 0.90
P(Neg|Bug) = 0.10

P(Neg|¬Bug) = 0.80
P(Pos|¬Bug) = 0.20

To test the posterior probability of having SUPERBUG, given that the test results came back positive,
let:

A = Bug
B = Pos

Plugging these into Bayes’ theorem, we get:

P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)
P(Pos) = P(Bug)P(Pos|Bug) + P(¬Bug)P(Pos|¬Bug)

= (0.01× 0.90) + (0.99× 0.20)
= 0.009 + 0.198
= 0.207

P(A|B) =
P(A)× P(B|A)

P(B)

P(Bug|Pos) =
P(Bug)× P(Pos|Bug)

P(Pos)

=
0.01× 0.90

0.207

=
0.009
0.207

= 0.04348
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To test the posterior probability of not having SUPERBUG, given that the test results came back
negative, let:

A = ¬Bug
B = Neg

P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)
P(Neg) = P(¬Bug)P(Neg|¬Bug) + P(Bug)P(Neg|Bug)

= (0.99× 0.80) + (0.01× 0.10)
= 0.792 + 0.001
= 0.793

P(A|B) =
P(A)× P(B|A)

P(B)

P(Bug|Neg) =
P(¬Bug)× P(Neg|¬Bug)

P(Neg)

=
0.99× 0.80
0.000792

=
0.792
0.793

= 0.9987

This means that a positive test results indicated that you only have a 4.3% likelihood of being
infected with SUPERBUG. The reason for this very low number is related to the low figure we have
for the prevalence of the infection in the population. This means that most people who are testes,
and gets a positive result have not been infected. In a pandemic this may be acceptable, since you
want to prevent the spread of the infection. In a situation where the majority of people are negative,
mass testing will not be helpful. When the testing regime is changed to only test people with a high
likelihood of being positive (such as having known symptoms, or having been exposed to a known
person with the disease), the prevalence in the tested population will go up, and the PPV will also
increase.

Something else to consider is that the prevalence is related to the population being tested. If the
tests are done randomly, you would see the sort of figures shown here. However, in reality people
are only tested when there is a valid suspicion that they may be positive, such as having most of the
related symptoms, or if they have been exposed to a known positive person. In such a population,
the prevalence will go up significantly, with a 25% prevalence being about right. Even in such a
case, there are still very many false positives, but the false negatives are very low.

Similarly, we can calculate the posterior probability of not having SUPERBUG, given a negative test
result:

A = ¬Bug
B = Neg

10
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Bayes’ theorem therefore tells us:

P(¬Bug|Neg) =
P(¬Bug)× P(Neg|¬Bug))

P(Neg)

=
0.9891× 0.98

0.9694
= 0.9999

which means that a negative test results indicates that you have an almost 100% likelihood of not
being infected with SUPERBUG.

Keep in mind that the numbers used here are purely hypothetical, and does not reflect any real
figures. False positive and false negative rates are as problematic in a new test as the prevalence
numbers would be. In the real world, you don’t look at the test results in isolation. First, there
is the uncertainty of the actual frequency of the population who has the infection. When looking
at something like cancer tests, where their is a long history of medical data to work with, the
figures about prevalence is very accurate, and becomes more so as more data is collected. With a
developing pandemic, such as we see now, there simply is not enough data to get the prevalence
accurately enough, and estimates are used, with various models developed specifically for this.

The timing of the test for a viral infection has an important part to play in the accuracy of test results.
Viral tests, for example, are dependant on the patient having enough viral particles for the test to
extract sufficient material for the test, and a day makes a huge difference in the viral load. Further,
RNA tests are highly sensitive, due to the RNA being unique for every entity. Such a test usually has
a very low false positive rate, but the false negative could be very high due to timing, mishandling of
the sample, lab errors, and so on.

The prevalence would also change as the outbreak progresses, but will get more accurate in time.
In the case of some outbreaks, there are people who are positive, but does not experience any
symptoms. Most of these people will not get diagnosed, nor tested. This would therefore mean
that the prevalence rate is underestimated. Antibody tests may indicate whether somebody have
had the infection in the past, which could then be added to the prevalence numbers. Again, such
tests will not be done on everybody, for practical and economic reasons, and people may lose their
immunity in time. In short, the prevalence rate is at bet an estimate.

In a pandemic situation, where the bulk of the population does not have the infection, we find that
the probability of a positive test being correct is much lower than a negative test being correct. Here
is an excellent page that explains why it is important to use a test that has high specificity.

• https://towardsdatascience.com/bayes-rule-with-a-simple-and-practical-example-2bce3d0f4ad0

• https://www.aruplab.com/news/4-21-2023/How-Accurate-Are-COVID-19-Tests

• https://www.bmj.com/content/369/bmj.m1808
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Question 2

Some information about the causes and symptoms of Lung Cancer are available. The factors that
affect a patient’s chances of having lung cancer are:

• Pollution (measured as High or Low)

• Smoker (measured as Yes or No)

It is also know that if a patient has Lung Cancer (measured as True or False) it will affect the patient’s
symptoms, namely:

• The patient having an abnormal chest X-ray result (measured as Abnormal or Normal)

• The patient experiencing Dyspnoea (difficult breathing in English, measured as Present or
Absent)

The following evidence is available about patients in general:

• 91% of patients are not exposed to high levels of Air Pollution

• 33% of patients are Smokers

Of patients that have Lung Cancer the following is known:

• 4% have been exposed to high levels of Air Pollution and are Smokers

• 3% have been exposed to high levels of Air Pollution, but are not Smokers

• 2% have had low exposure to Air Pollution and are Smokers

• 1 out of every 1000 have had low exposure to Air Pollution and are not Smokers

The following is known about the X-ray results of patients tested for Lung Cancer:

• 19 out of 20 patients with Cancer have abnormal X-ray results

• 1 out of 6 patients who do not have Cancer have abnormal X-ray results

The following is known about the symptoms of Dyspnoea:

• 70% of patients with Cancer have symptoms of Dyspnoea

• 25% of patients who do not have Cancer have symptoms of Dyspnoea

12
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Answer the following questions:

a) Construct a Bayesian Belief Network that illustrates the conditional dependencies between the
five variables, and draw a diagram to illustrate the network.

b) On your belief network diagram, show the conditional probability tables for each of the five
variables.

Here is a links you can reference to give you the basic background behind Bayesian Belief Networks:

• https://machinelearningmastery.com/introduction-to-bayesian-belief-networks/

• https://www.cs.ubc.ca/~murphyk/Bayes/Charniak_91.pdf

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail
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Discussion on Question 2(a))

Define the variables and their values:

Variable shortened values shortened in set notation
Lung Cancer LC True, False {T , F}
Air Pollution Air High, Low {H, L}
Smoker Sm Yes, No {Y , N}
X-ray Xr Abnormal, Normal {A, N}
Dyspnoea Dys Present, Absent {P, A}

The network contains five nodes, Lung Cancer, Air Pollution, Smoker, X-ray and Dyspnoea. From
the information provided Lung Cancer is conditionally dependent on Air Pollution and Smoker, while
the probabilities of the X-ray results and Dyspnoea as a symptom is dependent on whether a patient
has Lung Cancer or not.

Figure 3 shows the structure of these dependencies in the Bayesian lBelief Network, as nodes and
arrows.

14
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Air Pollution Smoker

Lung Cancer

X-ray Dyspnoea

P(Air=L) P(Air=H)
0.91 0.09

P(Sm=Y ) P(Sm=N)
0.33 0.67

Air Sm P(LC=T |Air , Sm) P(LC=F |Air , Sm)
H Y 0.04 0.96
H N 0.03 0.97
L Y 0.02 0.98
L N 0.001 0.999

LC P(Xr=A|LC) P(Xr=N|LC)
T 0.95 0.05
F 0.17 0.83

LC P(Dys=P|LC) P(Dys=A|LC)
T 0.7 0.3
F 0.25 0.75

Figure 3: A Bayesian Belief Network showing the (a) structure of the network and (b) the conditional
dependencies of the Lung Cancer data.
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Discussion on Question 2(b))

Probability tables are shown in Figure 3.
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Question 3

a) Write a short research report (roughly 10 pages) and give a detailed explanation of the basic
GA algorithm. Explain the terminology used, the operators, how to represent a solution to
the task as a chromosome, and how to determine/design a good fitness function, as well as
what criteria defines a good fitness function. Briefly discuss some variations on the basic GA
algorithm, and what they are used for.

The source of literature should ideally use textbooks, or articles published in scientific journals or
conferences. Review articles are a good option. Use the Harvard Referencing method.

The book ‘An Introduction to Genetic Algorithms’ by Melanie Mitchell is available on the Internet as
a PDF document. This book provides good detail on the basics of Genetic Algorithms.

• https://svn-d1.mpi-inf.mpg.de/AG1/MultiCoreLab/papers/ebook-fuzzy-mitchell-99.pdf

Other useful links:

• http://www.cs.cmu.edu/~02317/slides/lec_8.pdf

• https://towardsdatascience.com/how-to-define-a-fitness-function-in-a-genetic-algorithm-be572b9ea3b4

b) Consider the following optimisation tasks:

(i) Optimise the function f (x) = x2 over the interval [0, 31]
(ii) Find the square root of a given number without using the square root calculation.
(iii) Find values for x and y that will satisfy the equation 2x2 + y = 23
(iv) Find the intersection point(s) of y = 0.4x−2 − 3 and 2x2 + y = 23

For each of these tasks:

• Define the limitations of the task.
• Design an appropriate chromosome to represent solutions to the task.
• Define a fitness function, keeping the criteria for good fitness functions in mind.
• Generate an initial population of 10 members, apply the fitness function to these, and

choose the top 5 for reproduction.
• Calculate the exact solution(s) without using a Genetic Algorithm (using normal mathe-

matical techniques).

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail
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Discussion on Question 3

a) The research report is marked individually.

b) Genetic Algorithms create huge populations of possible solutions. Each of these members
will have a number of operations applied to them, from fitness testing to the generation of the
new population. That means the the chromosome encoding and the fitness function need to
be as storage and computationally efficient as possible. The fitness function also should also
be clearly understood in relation to the optimisation problem, and quantitatively measure the
fitness of a particular chromosome/solution. These fitness scores should also be intuitive -
better scores produce better solutions.

(i) Optimise the function f (x) = x2 over the interval [0, 31].

• The problem domain is limited to the range [0, 31]. It is also assumed that optimisation
here implies maximising the function value (if you are trying to minimise the function
value the fitness function is inverted). It is also assumed that the domain is limited to
integer x-values.

• It is possible to encode the chromosome using a 5-bit string by simply using the
binary encoding of the integer. For example, x = 1 is encoded as 00001, x = 23 is
encoded as 11101.

• The fitness function is simply testing the chromosome against the function. Let c be
the integer value associated with a chromosome.

fit(c) = c2

Higher fitness values are directly correlated to higher function values.
• 10 randomly generated chromosomes make up the initial population:

chromosome c fit(c) top 5?
00101 20 400 yes
10010 9 81 no
11101 23 529 yes
10000 1 1 no
10001 17 289 yes
10101 21 441 yes
01110 14 196 no
11000 3 9 no
11110 15 225 no
01001 18 324 yes

• For reference, f (31) = 312 = 961.

(ii) Find the square root of a given number without using the square root calculation.

• The task is to find y =
√

x for a given x . By definition the square root of a positive
real number will be smaller than the number. We can therefore limit the domain to
y ∈ [0, x ]. This does mean that the bulk of the chromosomes will be unfit, though.
Can you think of a better mechanism to limit the domain?
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• The chromosome in this case could simply be a real number in the valid domain:
c ∈ [0, x ], with c, x ∈ R. This does mean that the binary crossover and mutation
operations need to be replaced by real-valued versions, for which there are a number
of techniques to implement. Of course, real valued, floating-point numbers can
also be represented as binary numbers (as is done in the hardware of a computer
already).

• Since multiplication is a much less computationally intensive operation than calcu-
lation the square root, fitness can be tested by simply squaring a potential solution
and comparing this with the input value, x . The closer the potential solution is to
being correct, the smaller this difference. Therefore, to correlate higher fitness values
with solutions that are closer to correct, we need to invert the difference. The fitness
function now becomes:

fit(c) =
1

|x − c2|
• Let x = 100. Then, 10 randomly generated chromosomes make up the initial

population:
chromosome fit(c) top 5?

60 1/3500 no
8 1/36 yes
45 1/1925 no
14 1/96 yes
47 1/2109 no
97 1/9309 no
24 1/476 yes
23 1/429 yes
11 1/21 yes
63 1/3869 no

• For reference,
√

100 = 10.

(iii) Find values for x and y that will satisfy the equation 2x2 + y = 23

• The task is to find values for x and y that will satisfy 2x2 + y = 23. It is immediately
obvious that there are infinitely many solutions, but since this is a quadratic equation,
y = f (x) = 23− x2, it tells us that f (x) has a maximum value of y = 23 at x = 0. This
allows us to limit the y ∈ [−∞, 23]. x is unlimited, x ∈ [−∞,∞].

• The chromosome in this case could simply be a set of real numbers C = {c1, c2} in
the valid domains: c1 ∈ [−∞, 23], c2 ∈ [−∞,∞] and c1, c2 ∈ R. Again, this means
that the binary crossover and mutation operations need to be replaced by real-valued
versions.

• The fitness function values will be larger the closer 2x2 + y − 23 gets to 0. Invert the
difference to get the fitness function:

fit(C) =
1

2c2
1 + c2 − 23

• To limit the initial search for solution, choose 10 randomly generated chromosomes
from the ranges, c1 ∈ {−10, 10} and c2 ∈ {−10, 23}:

19



chromosome fit(C) top 5?
{7, 6} 1/81 no
{−9, 18} 1/157 no
{−8,−4} 1/101 no
{−3, 16} 1/11 yes
{−9,−7} 1/132 no
{−7, 9} 1/84 no
{6, 10} 1/59 yes
{−4, 18} 1/27 yes
{−5,−3} 1/24 yes
{−7, 2} 1/77 yes

• There are infinitely many solutions. For reference, the following three points are
known to satisfy the equation:

(±
√

23/2, 0)

(0, 23)

(iv) Find the intersection point(s) of y = 0.4x−2 − 3 and 2x2 + y = 23

• This task is to find value(s) for x where 0.4x−2 − 3 = 23− 2x2. The value(s) of y can
then be calculated by plugging the x values into either of the equations and solving
for y . These are a quadratic function and a logarithmic function, so we can infer
that there could be 0, 1, or 2 intersection points. As in the previous task, one of the
equation has a maximum at (0, 23), so there will not be any intersection points at
values of y larger than 23. This allows us to limit the y ∈ [−∞, 23]. x is unlimited,
x ∈ [−∞,∞].

• The chromosome in this case could simply be a single real numbers c in the valid
domain for x : c ∈ [−∞,∞]. Again, this means that the binary crossover and mutation
operations need to be replaced by real-valued versions.

• The fitness function values will be larger the smaller the difference between the
two equations. Again, invert the difference to get larger fitness values for smaller
differences:

fit(c) =
1

|(0.4x−2 − 3)− (23− 2x2)|

=
1

|2x2 + 0.4x−2 − 26|

• To limit the initial search for solution, choose 10 randomly generated chromosomes
from the range, c ∈ {−10, 10}:
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chromosome fit(c) top 5?
18 0.00161 no
−3 0.01115 yes
20 0.00236 no
14 0.00273 no
3 0.13158 yes
6 0.02173 yes
−2 0.04748 yes
−7 0.00026 yes
−1 0.11940 yes
4 0.00321 no

• For reference the intersection points are at:

(−1.46211, 20.86244)

and
(5.09325,−2.94124)

© Unisa 2023
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