
BAR CODE

Learn without limits. university
of south africa

Tutorial Letter A2S/0/2023

Machine Learning

COS4852

Year module

School of Computing

IMPORTANT INFORMATION

This document contains a discussion on Assignment 2 for COS4852 for 2023.

COS4852/A2S/0/2023

CONTENTS

Page

1 INTRODUCTION ..3

2 Assignment 2..3

2

COS4852/A2S

1 INTRODUCTION

This document contains a discussion on Assignment 2 for COS4852 for 2023.

2 Assignment 2

Question 1

Read Chapter 4 of Nilsson’s book (which you downloaded for Assignment 1). Take special note
of section 4.1 and its discussion of decision boundaries and their polarity and the concept of the
neural network weight-space. The terms TLU and Perceptron refer to the same construct here (i.e.
a neuron with weights and a threshold activation function). Similarly, the terms hyperplane, decision
boundary, and decision surface refer to the same concept, which linearly divides a space into two
sub-spaces. The space can have any number of dimensions. In a 2-dimensional space the decision
boundary is a straight line. There is a direct mapping between the decision boundary(s) and the
weights of the neural network.

Question 1(a)

Consider Case (a), as shown in Figure 1. The figure shows the instance space of a Perceptron (a
single neuron) with its decision boundary. This is Case (a). Positive instances are marked as Pi and
negative instance as Ni :

P1 = (-4, 4)
P2 = (1, 4)
P3 = (2, 6)
P4 = (6, 2)
N1 = (-3, 1)
N2 = (1, -5)
N3 = (6, -4)
N4 = (4, -2)

Calculate the values of the weights of the Perceptron, using the position of the decision boundary.
The cut-off points of the decision boundary on the axes are at (6, 0) and (0, 2).

Discussion on Question 1(a)

The decision boundary of a Perceptron with two inputs, x and y must satisfy the equation:

w0 + w1x + w2y = 0

3

-6-6 -5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44 55 66 77 88

-6-6

-5-5

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

66

77

88

00

decision boundarydecision boundary

CC11 = (6, 0)= (6, 0)

CC22 = (0, 2)= (0, 2)

NN44 = (4, -2)= (4, -2)

NN33 = (6, -4)= (6, -4)

NN11 = (-3, 1)= (-3, 1)

NN22 = (1, -5)= (1, -5)

PP44 = (6, 2)= (6, 2)

PP33 = (2, 6)= (2, 6)

PP22 = (1, 4)= (1, 4)PP11 = (-4, 4)= (-4, 4)

Figure 1: Case (a): instances and the decision boundary of a Perceptron.

4

COS4852/A2S

Two known points on the line of the decision boundary are the intersection points with the axes,
C1 = (6, 0) and C2 = (0, 2). Inserting these values into the equation for the Perceptron decision
boundary gives:

w0 + 6w1 = 0

w0 + 2w2 = 0

Which gives:
w0 = -6w1

w0 = -2w2

Any values of w0 , w1 and w2 that satisfy these two equations will suffice. Choose w0 = 6. This gives
w1 = -1 and w2 = -3. To summarise:

w0 = 6
w1 = -1
w2 = -3

The decision boundary has a polarity, as shown in Figure 2. In other words it has a positive and
negative side, classifying all instances on one side as positive and those on the other side as
negative. This is due to the threshold activation function used by the Perceptron.

There are an infinite set of values for wi that will describe a line that corresponds to the decision
boundary, but only half of these will classify the data correctly. To test whether the calculated weight
values correctly classifies the data substitute the (x1, x2) values of any example into the equation of
the decision boundary, using the calculated weights. Choose the positive instance P1 = (-4, -4):

w0 + w1x + w2y
= 6 + (-1)(-4) + (-3)(4)
= -2
< 0

The calculated weights classifies the positive instance at P1 as negative. This means that the weight
values are therefore incorrect. The reason for this is due to the polariry of the decision boundary or
decision boundary.

We can get the exact same line by changing the sign of initial weights, to become:

w0 = -6
w1 = 1
w2 = 3

which gives another valid equation for the line, but classifies the data point correctly. Test P1 again:

w0 + w1x + w2y
= -6 + (1)(-4) + (3)(4)
= 2
> 0

5

-6-6 -5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44 55 66 77 88

-6-6

-5-5

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

66

77

88

00

decision boundarydecision boundary

CC11 = (6, 0)= (6, 0)

CC22 = (0, 2)= (0, 2)

NN44 = (4, -2)= (4, -2)

NN33 = (6, -4)= (6, -4)

NN11 = (-3, 1)= (-3, 1)

NN22 = (1, -5)= (1, -5)

PP44 = (6, 2)= (6, 2)

PP33 = (2, 6)= (2, 6)

PP22 = (1, 4)= (1, 4)PP11 = (-4, 4)= (-4, 4)

Figure 2: Case (a): polarity of the decision boundary of a Perceptron.

6

COS4852/A2S

thereby correctly classifying the positive instance P1 as positive. These weights are therefore correct.
The resulting correct polarity is shown in Figure 2. All the instances should be checked to make
sure that there is not some other calculation error, but is left as an exercise to the reader (you).

Question 1(b)

Consider Case (b), as shown in Figure 3. The figure shows the instance space of another Perceptron.

-6-6 -5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44 55 66 77 88 99 1010

-7-7

-6-6

-5-5

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

66

77

88

99

1010

00

NN
44

= (2, -5)= (2, -5) NN
33

= (6, -5)= (6, -5)

NN11 = (2, 4)= (2, 4)

NN22 = (1, -2)= (1, -2)

PP44 = (8, 2)= (8, 2)

PP33 = (5, -1)= (5, -1)

PP22 = (6, 6)= (6, 6)

PP11 = (1, 1)= (1, 1)

Figure 3: Case (b): Positive and Negative instance data for a Perceptron.

Calculate the weights for a single-unit Perceptron (i.e. one neuron) that will classify the given
instances with the lowest error. Derive the decision boundary for this neuron. Draw a diagram
showing the correct decision boundary. Discuss your solution.

What is different about this problem than the one in Question 1(a)? How would you go about finding
a neural network that will classify this data 100% correctly? Discuss.

7

Discussion on Question 1(b)

The short answer is that the instances as given in Figure 3 are not linearly separable. In other words,
there is no single line that will separate all the positive instances from all the negative instances.
This, in turn, means that a single Perceptron cannot classify all the instances correctly.

It is possible to find a single line (per implication a single Perceptron) that minimises the classification
error, but there will still be incorrect classifications. A possible decision boundary (using the shortest
distance from the centroids of each set of the positive and negatives instance respectively, to the
decision boundary) is given by the equation:

-7.56x − 5.44y + 7.34 = 0

as shown in Figure 4.

-6-6 -5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44 55 66 77 88 99

-7-7

-6-6

-5-5

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

66

77

88

99

1010

00

centroid boundarycentroid boundary

NN44 = (2, -5)= (2, -5) NN33 = (6, -5)= (6, -5)

NN11 = (2, 4)= (2, 4)

NN22 = (1, -2)= (1, -2)

PP44 = (8, 2)= (8, 2)

PP33 = (5, -1)= (5, -1)

PP22 = (6, 6)= (6, 6)

PP11 = (1, 1)= (1, 1)

Figure 4: Case (b): A possible decision boundary.

8

COS4852/A2S

Notice that with this decision boundary the negative instance N1 is incorrectly classified as positive.

To get a correct classification, a multi-layer neural network is required, with at least two neurons in
the hidden layer.

As an exercise, derive the equation for a valid decision boundary, using the least squares errors
method.

As a further exercise, design a neural network, with 2 hidden layer neurons, and a single output,
that will correctly classify this data set. Figure 5 shows what the decision boundaries of the 2 hidden
layer neurons of such a network may look like. Use the cut-off points in this figure to calculate the
weights.

HINT: Take a look at this Youtube video on the XOR problem – which is very similar to our problem
here.

-6-6 -5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44 55 66 77 88 99

-6-6

-5-5

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

66

77

88

99

1010

00

decision boundary 1decision boundary 1

decision boundary 2decision boundary 2

CC11 = (-3, 0)= (-3, 0) CC22 = (0, -1)= (0, -1)

NN44 = (2, -5)= (2, -5) NN33 = (6, -5)= (6, -5)

NN11 = (2, 4)= (2, 4)

NN
22

= (1, -2)= (1, -2)

PP44 = (8, 2)= (8, 2)

PP33 = (5, -1)= (5, -1)

PP22 = (6, 6)= (6, 6)

PP11 = (1, 1)= (1, 1)

CC33 = (-1, 0)= (-1, 0)

CC44 = (0, 1)= (0, 1)

Figure 5: Case (b): Decision boundaries of two hidden layer neurons, using a multi-layer neural
network.

9

https://www.youtube.com/watch?v=s7nRWh_3BtA

Question 1(c)

Consider Case (c), as shown in Figure 6.

The figure shows the instance space of a Perceptron with its decision boundary. Calculate the
values of the weights of the Perceptron, using the position of the decision boundary. The cut-off
points of the decision boundary on the axes are at C1 = (6, 0, 0), C2 = (0, 9, 0) and C3 = (0, 0, 8).

Positive instances are marked as Pi and negative instance as Ni :

P1 = (3, 5, 3)
P2 = (6, 6, 0)
P3 = (5, 0, 7)
P4 = (9, 6, 3)
N1 = (4, 0, 2)
N2 = (1, 3, 3)
N3 = (-4, 5, 4)
N4 = (2, 2, 0)

Discussion on Question 1(c)

The decision boundary of a Perceptron with three inputs, x , y and z must satisfy the equation:

w0 + w1x + w2y + w3z = 0

Three known points on the surface of the decision boundary are its intersection points with the axes,
C1 = (6, 0, 0), C2 = (0, 9, 0) and C3 = (0, 0, 8). Substituting these into the decision boundary equation
produces the simultaneous equations:

w0 + 6w1 = 0

w0 + 9w2 = 0

w0 + 8w3 = 0

Which is the same as:
6w1 = -w0

9w2 = -w0

8w3 = -w0

Therefore:
6w1 = 9w2 = 8w3

Taken apart, these become:
w1 = 9/6 · w2 = 3/2 · w2

w1 = 8/6 · w3 = 4/3 · w3

10

COS4852/A2S

Figure 6: Case (c): instances and the decision boundary of a Perceptron (seen from different
angles).

11

w2 = 8/9 · w3

Any values of the weights, w1, w2 and w3 that satisfy these equations simultaneously will produce a
valid decision boundary. Arbitrarily choose w1 = -1.

This gives:
-1 = 3/2 · w2

-1 = 4/3 · w3

and results in:
w2 = -2/3

w3 = -3/4

Solve w0:

w0 + 6 · (-1) = 0

w0 + 9 · (-2/3) = 0

w0 + 8 · (-3/4) = 0

Therefore (all three equations agree):
w0 = 6

To summarise:

w0 = 6
w1 = -1
w2 = -2/3

w3 = -3/4

Since the decision boundary has polarity the weight values should be tested to determine if the
Perceptron with these weight values classifies the data correctly. Pick the positive instances
P1 = (3, 5, 3) for the first test:

w0 + w1x + w2y + w3z
= 6 + (-1)(3) + (-2/3)(5) + (-3/4)(3)
= 6− 3− 10/3− 9/4

= 72/12− 36/12− 40/12− 27/12

= -31/12

< 0

12

COS4852/A2S

This means that the current weights incorrectly classifies the positive instance P1 as negative. The
weight values need to be inverted to correct the polarity of the decision boundary to produce correct
classification of this particular instance.

w0 = -6
w1 = 1
w2 = 2/3

w3 = 3/4

Testing P1 now gives:

w0 + w1x + w2y + w3z
= -6 + (1)(3) + (2/3)(5) + (3/4)(3)
= -6 + 3 + 10/3 + 9/4

= -72/12 + 36/12 + 40/12 + 27/12

= 31/12

> 0

The positive instance is therefore correctly classified by the Perceptron. This calculation was done
with a single instance, but should be repeated with all the instances. If all of them are correctly
classified the decision boundary is correct. If any one of the instances are still incorrectly classified,
it may mean that a single neuron network cannot classify the data, or that there was an error in your
calculations.

Question 1(d)

Draw a diagram to illustrate the complete structure of the Perceptron in Question 1(c) (the instance
space shown in Figure 6). Show on the diagram all the inputs, outputs, variables, functions, as well
as the weight values you calculated in Question 1(c). Use the correct terminology and mathematical
notation.

13

Discussion on Question 1(d)

Figure 7 shows the diagram of a Perceptron with 3 inputs and the weights as in Question 1(c). The

PERCEPTRON∑ OUTPUT
x1

INPUTS

x2

x3

x0

THRESHOLD

w1 = 1

w2 = 2/3

w3 = 3/4

w0 = -6

net = w0 + w1x + w2y + w3z

O =

{
1 if net > 0

-1 otherwise

Figure 7: A Perceptron with 3 inputs.

dotted box indicates the ‘boundaries’ of the Perceptron. The other nodes in the diagram are the input
and output nodes and are external the Perceptron. The input and output nodes may themselves
be Perceptron nodes, sending their output to, or receiving input from this Perceptron. Such an
arrangement will produce a network of Perceptrons, called a Neural Network. The threshold (or
bias) node x0 always has a value of 1. A non-zero threshold (bias) weight w0 moves the decision
boundary away from the origin in instance space. If there was no threshold node, or if the bias or
threshold weight was zero, the decision boundary would always touch the origin, severely limiting
the classification ability of the Perceptron.

Consider again the Perceptron in Figure 1 and the effect of a decision boundary that always has to
touch the origin. Even though the instance space is linearly separable, a Perceptron with a zero
bias weight will not be able to classify the instances correctly.

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail

14

COS4852/A2S

Question 2

Design neural networks, using one or more Perceptron neurons, for the Boolean functions f1, f2, and
f3, as detailed in Questions 2(a) to (c).

Let your Perceptron use the threshold activation function (shown in Figure 8):

O(net) =

{
1 if net > 0
0 otherwise

net
-2-2 -1-1 11 22

O(net)

11

00

Figure 8: Threshold activation function.

For each sub-question, draw diagrams to show the decision boundaries that your network uses, and
the structure of the neural network showing the weights that will correctly classify the function. Show
the arguments for your choices, all your assumptions, definitions, and calculations. Prove that the
weights you use will correctly classify the function.

Note that this question does not ask you to train a neural network using one of the neural network
algorithms. The purpose here is similar to the question on the relationship between decision trees
and Boolean expressions, in the previous assignment. It is possible to directly map a specific
Boolean expression to a network of Perceptrons. Rojas has a very good explanation of the concepts
needed in Chapter 2 (and some aspects on XOR in Chapter 6).

Question 2(a)

f1(x , y), as shown in Table 1

x y f1(x , y)
-2 -2 0
-2 +2 1
+2 -2 0
+2 +2 0

Table 1: Function f1(x , y).

Discussion on Question 2(a)

15

A single Perceptron can represent any one of the primitive Boolean functions AND, OR, NAND and
NOR. A single Perceptron can also represent the negation of any of these Boolean primitives by
changing the signs of the weights associated with that particular input.

Plot the points of Table 1 in the input space of f1. Figure 9 shows f1 with a valid decision boundary.
The decision boundary for a two-input Perceptron is defined by the function, w0 + w1x + w2y = 0.

–3–3 –2–2 –1–1 11 22 33

–3–3

–2–2

–1–1

11

22

33

00

(-1, 0)(-1, 0)

(0, 1)(0, 1)

(2, -2)(2, -2)(-2, -2)(-2, -2)

(2, 2)(2, 2)(-2, 2)(-2, 2)

XX

YY

Figure 9: f1(x , y) with a valid decision boundary.

The task is now to find weight values that will match the decision boundary in Figure 9. Solving for
wi , using the decision boundary as in Figure 9, and testing the weight polarity (changing signs if
need be) gives:

w0 = -1
w1 = -1
w2 = 1

Calculate the Perceptron output for each of the possible inputs, to get the results in Table 2, which
show that a Perceptron network with a single neurons, using these weights correctly classify f1.

The structure of the Perceptron using these weights are shown in Figure 10.

16

COS4852/A2S

x y f1 net = -1− x + y O(net)
-2 -2 -1 -1 + 2− 2 = −1 0
-2 +2 +1 -1 + 2 + 2 = +4 1
+2 -2 -1 -1− 2− 2 = −5 0
+2 +2 -1 -1− 2 + 2 = −1 0

Table 2: Calculated outputs for the function f1(x , y) using the derived weights.

O(net)

OUTPUT
x

INPUTS

y

1

THRESHOLD

w1 = -1

w2 = +1

w0 = -1

Figure 10: A Perceptron with two inputs for f1(x , y).

Question 2(b)

f2(x , y), as shown in Table 3

x y f2(x , y)
-2 -2 0
-2 +2 1
+2 -2 1
+2 +2 0

Table 3: Function f2(x , y).

Discussion on Question 2(b)

A single Perceptron cannot correctly classify f2, since it is not linearly separable. In other words
there is not a single decision boundary in the input space of the Perceptron that will separate the
input examples correctly. This can be better seen in Figure 11.

In order to use Perceptrons to perform the classification required for f2, a network of Perceptrons
in two layers are needed, where the first layer performs sub-classifications matching each of the
blue lines in Figure 11. The output of this Perceptron is then fed to another Perceptron in a second
layer. The first layer of Perceptrons therefore re-maps the input points into linearly separable values.
Effectively f2(x , y) is re-written as a Boolean function of two sub-functions,

f2(x , y) = g3(x , y) = g1(x , y) ∧ g2(x , y)

17

–3–3 –2–2 –1–1 11 22 33

–3–3

–2–2

–1–1

11

22

33

00

(0, -1)(0, -1)

(1, 0)(1, 0)

(0, 1)(0, 1)

(-1, 0)(-1, 0)

(2, -2)(2, -2)(-2, -2)(-2, -2)

(2, 2)(2, 2)(-2, 2)(-2, 2)

XX

YY

Figure 11: f2(x , y) needs two decision boundaries to classify correctly.

x y f2 g1(x , y) g2(x , y) g3(g1, g2)
-2 -2 -1 -1 -1 0
-2 +2 +1 +1 -1 1
+2 -2 +1 -1 +1 1
+2 +2 -1 -1 -1 0

Table 4: Re-map f2 as sub-functions g1(x , y), g2(x , y) and g3(g1, g2).

18

COS4852/A2S

as shown in Table 4.

Sub-functions g1, g2, and g3 (as shown in Figure 12) are linearly separable. They can therefore be
implemented as Perceptrons using a threshold function.

–3–3 –2–2 –1–1 11 22 33

–3–3

–2–2

–1–1

11

22

33

00

(0, 1)(0, 1)

(-1, 0)(-1, 0)

(2, -2)(2, -2)(-2, -2)(-2, -2)

(2, 2)(2, 2)(-2, 2)(-2, 2)

XX

YY

–3–3 –2–2 –1–1 11 22 33

–3–3

–2–2

–1–1

11

22

33

00

(0, -1)(0, -1)

(1, 0)(1, 0)

(2, -2)(2, -2)(-2, -2)(-2, -2)

(2, 2)(2, 2)(-2, 2)(-2, 2)

XX

YY

–2–2 –1–1 11 22

–2–2

–1–1

11

22

00

(0, -1)(0, -1)

(-1, 0)(-1, 0)

(-1, -1)(-1, -1)

(-1, 1)(-1, 1)

(1, -1)(1, -1)

gg11

gg22

Figure 12: Functions g1(x , y), g2(x , y), and g3(g1, g2) with decision boundaries that will classify
each of the sub-problems correctly.

The weights for these Perceptrons are calculated, polarity corrected, and tested for correctness, in

19

the same way as before, and results in:

wg10 = -1
wg1x = -1
wg1y = 1
wg20 = -1
wg2x = 1
wg2y = -1
wg30 = 1

wg3g1 = 1
wg3g2 = 1

The Perceptron network for f2(x , y) is shown in Figure 13. Note the three neurons calculating the
three sub-functions g1, g2, and g3.

O1 → g1

O2 → g2

O → g3

OUTPUT
x

INPUTS

y

1

THRESHOLD

wg1x = -1

wg1y
= 1

w
g2 x = 1

wg2y = -1

wg10 = -1wg20 = -1 wg30 = 1

w
g3 g1 = 1

wg3g2
= 1

Figure 13: The Perceptron network for f2(x , y).

20

COS4852/A2S

Question 2(c)

f3(x , y), as shown in Table 5

x y f3(x , y)
-1 -1 1
-1 +1 0
+1 -1 1
+1 +1 1

Table 5: Function f3(x , y).

Discussion on Question 2(c)

A quick comparison of Tables 1 and 5 show that f3 is a scaled inverse of f3. By plotting the points in
(x , y)-space (shown in Figure 14) it is obvious that the decision boundary used for f1 also separates
the positive and negative instances.

–2–2 –1–1 11 22

–2–2

–1–1

11

22

00

(-1, 0)(-1, 0)

(0, 1)(0, 1)

(1, -1)(1, -1)(-1, -1)(-1, -1)

(1, 1)(1, 1)(-1, 1)(-1, 1)

XX

YY

Figure 14: f3(x , y) needs two decision boundaries to classify correctly.

The difference is that the polarity of the decision boundary is reversed. This means the weights
used for the Perceptron for f1 can be inverted and used for f3.

w0 = 1
w1 = 1
w2 = -1

21

x y f1 net = 1 + x − y O(net)
-1 -1 +1 1 + -1 + 1 = 1 1
-1 +1 -1 1 + -1− 1 = -1 0
+1 -1 +1 1 + 1 + 1 = 3 1
+1 +1 +1 1 + 1− 1 = 1 1

Table 6: Calculated outputs for the function f3(x , y) using the inverted weights from f1.

Test this observation by calculating the network outputs for the inverted weights. The results in
Table6 show that this observation was correct.

The resulting Perceptron is shown in Figure 15.

O(net)

OUTPUT
x

INPUTS

y

1

THRESHOLD

w1 = 1

w2 = -1

w0 = 1

Figure 15: A Perceptron with two inputs for f3(x , y).

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail

22

COS4852/A2S

Question 3

Question 3(a)

Find the original 1986 article by Rumelhart, Hinton, and Williams that introduced the BACKPROPA-
GATION algorithm, and read it. Give the URL where you found it.

Discussion on Question 3(a)

The original article (letter) was published as an article in Nature:

Authored By: D. E. Rumelhart, G. E. Hinton and R. J. Williams
Paper Title: Learning Representations By Back-Propagating Errors
In: Nature, Vol. 323
Date: 1986
Pages: 533-536

A more comprehensive version was later published in a book.

Some URLs where it can be found:

https://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf
https://www.academia.edu/2520405/Learning_representations_by_back-propagating_errors
http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf

Question 3(b)

Go to the brilliant.org website on Artificial Neural Networks and Feedforward Networks (links
below). Study the material presented there. Then go to the brilliant.org website on the
BACKPROPAGATION algorithm (link below) on how to train a feedforward neural network. Study the
material presented there.

https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/feedforward-neural-networks/
https://brilliant.org/wiki/backpropagation/

Study the Python code at the bottom of the brilliant.org site on BACKPROPAGATION, to see
one way of implementing the training phase of the BACKPROPAGATION algorithm, in Python. This
particular network consists of three inputs units, one layer of three hidden units, and a single output
units, that learns function f4 in Table 7.

Copy and execute the code in a Python 3 interpreter or a Jupyter notebook. Copy the output of your
program into your answer. Explain what the output says about the training of the network. Explain
the output values in terms of the training data.

Discussion on Question 3(b)

The code below is modified from the brilliant.org website:

23

https://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf
https://www.academia.edu/2520405/Learning_representations_by_back-propagating_errors
http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf
https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/feedforward-neural-networks/
https://brilliant.org/wiki/backpropagation/

x1 x2 x3 f4(x1, x2, x3)
0 0 1 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 7: f4(x1, x2, x3)

#
Modi f ied from code at h t t ps : / / b r i l l i a n t . org / w i k i / backpropagat ion /
#

import numpy as np

de f ine the sigmoid f u n c t i o n
def sigmoid (x , d e r i v a t i v e =False) :

i f (d e r i v a t i v e == True) :
return x * (1 − x)

else :
return 1 / (1 + np . exp(−x))

choose a random seed f o r rep roduc ib le r e s u l t s
np . random . seed (1)

l ea rn i ng ra te
alpha = .1

number o f nodes i n the hidden laye r
num_hidden = 3

inpu ts
X = np . ar ray ([

[0 , 0 , 1] ,
[0 , 1 , 1] ,
[1 , 0 , 0] ,
[1 , 1 , 0] ,
[1 , 0 , 1] ,
[1 , 1 , 1] ,

])

outputs
x . T i s the transpose of x , making t h i s a column vec to r
y = np . ar ray ([[0 , 1 , 0 , 1 , 1 , 0]]) . T

i n i t i a l i z e weights randomly w i th mean 0 and range [−1 , 1]

24

COS4852/A2S

the +1 i n the 1 s t dimension o f the weight matr ices i s f o r the b ias weight
hidden_weights = 2*np . random . random ((X . shape [1] + 1 , num_hidden)) − 1
output_weights = 2*np . random . random ((num_hidden + 1 , y . shape [1])) − 1

number o f i t e r a t i o n s o f g rad ien t descent
num_i te ra t ions = 10000

f o r each i t e r a t i o n o f g rad ien t descent
for i in range (num_i te ra t ions) :

forward phase
np . hstack ((np . ones (. . .) , X) adds a f i x e d i npu t o f 1 f o r the b ias weight
i npu t_ laye r_ou tpu ts = np . hstack ((np . ones ((X . shape [0] , 1)) , X))
h idden_ layer_outputs = np . hstack ((np . ones ((X . shape [0] , 1)) ,

sigmoid (np . dot (inpu t_ layer_ou tpu ts ,
hidden_weights))))

ou tpu t_ layer_ou tpu ts = np . dot (h idden_layer_outputs ,
output_weights)

backward phase
output l aye r e r r o r term
ou tpu t_e r ro r = ou tpu t_ layer_ou tpu ts − y
hidden laye r e r r o r term
[: , 1 :] removes the b ias term from the backpropagat ion
h idden_er ror = h idden_ layer_outputs [: , 1 :] *

(1 − hidden_ layer_outputs [: , 1 :]) *
np . dot (ou tpu t_er ro r , output_weights . T [: , 1 :])

p a r t i a l d e r i v a t i v e s
hidden_pd = inpu t_ laye r_ou tpu ts [: , : , np . newaxis] *

h idden_er ror [: , np . newaxis , :]
output_pd = hidden_ layer_outputs [: , : , np . newaxis] *

ou tpu t_e r ro r [: , np . newaxis , :]

average f o r t o t a l g rad ien ts
to ta l _h idden_g rad ien t = np . average (hidden_pd , ax is =0)
t o t a l _ o u t p u t _ g r a d i e n t = np . average (output_pd , ax is =0)

update weights
hidden_weights += − alpha * to ta l _h idden_g rad ien t
output_weights += − alpha * t o t a l _ o u t p u t _ g r a d i e n t

p r i n t the f i n a l outputs o f the neura l network on the inpu ts X
pr in t (" Output A f t e r T ra in ing : \ n { } " . format (ou tpu t_ layer_ou tpu ts))

25

The initial output of the code gives:

Output A f t e r T ra in ing :
[[2.11135662e−04]

[9.99525588e−01]
[1.66889680e−04]
[9.99576185e−01]
[9.99362960e−01]
[1.30185107e−03]]

These six values are the output values of the network that correspond to the six input patterns, as in
Table 8.

x1 x2 x3 f4(x1, x2, x3) network output rounded
0 0 1 0 0.000111357 0.00
0 1 1 1 0.999525588 1.00
1 0 0 0 0.000166890 0.00
1 0 1 1 0.999576185 1.00
1 1 0 1 0.999362960 1.00
1 1 1 0 0.001301851 0.00

Table 8: f4(x1, x2, x3) and results from the original Python code

The table also shows what happens when the network outputs are rounded (to the nearest hundredth
in this case). The outputs effectively become 0 and 1 and map the values of f4 exactly. This shows
that the network learned to map the input data correctly onto the output data. The reason we can
do this has to do with the asymptotic nature of the sigmoid activation function. As the absolute input
to the sigmoid function increases the closer its output gets to either 0 or 1. Refer back to your study
of the brilliant.org website on Artificial Neural Networks.

26

COS4852/A2S

Question 3(c)

Use the data from function f4, and perform the following three experiments, by modifying the Python
code as indicated:

(1) Run the code as-is, with the three (3) hidden neurons.

(2) Change the code to modify the network structure to use only two (2) hidden neurons instead
of three (3).

(3) Change the code again to modify the network structure to use a single (1) hidden neuron.

Change or remove the random seed value to allow random initialisation of weight values. Play
with the learning rate alpha, and the number of training iteration, num_iterations to achieve
the best network results. Modify the code to show the hidden layer weights. Show listings of your
modifications to the code. Show the outputs from the code. Discuss the results of these three
experiments, in terms of:

(i) Whether the training was successful or not.

(ii) What the output results mean.

(iii) Compare the results of the three experiments, and explain why some were successful and
some not.

(iv) Use the weight values from the program output and draw a diagram of the input space and the
hidden layer decision boundaries to support your argument.

Discussion on Question 3(c)

Start by drawing the input space, as in Figure 16. This shows that it should be possible to define
two decision boundaries that will separate the input space into three distinct areas, with each area
containing instances of only one class. This in turn will make it possible for the output neuron to
correctly classify any instance in each area into the correct class.

Does this observation correspond with the results of the experiments?

Figure 16 shows the input space for the three experiments.

Question 3(c)(1)

A network with three hidden neurons should be successful. Experiment (1) is simply a repeat of
Question 3(b, where the training was successful, and confirms the hypothesis.

Question 3(c)(2)

The second experiment changes the following code snippet to use 2 hidden layers instead of 3:

27

Figure 16: The input space for the three experiments.

28

COS4852/A2S

number o f nodes i n the hidden laye r
num_hidden = 2

A network with two hidden neurons should struggle more to be trained successfully, as the option
space for correct weight values are much smaller, and therefore more difficult to find. This should
show in how many attempts it takes to train the network successfully. One set of weights that are
successful for a network with two hidden neurons, are:

w10 = -0.66
w11 = 5.25
w12 = -7.04
w13 = 5.10
w20 = 8.23
w21 = -5.44
w22 = 6.70
w23 = -5.39

Using the familiar equations for a plane in 3D-space,

w10 + w11x1 + w12x2 + w13x3 = 0
w20 + w21x1 + w22x2 + w23x3 = 0

we can draw the decision boundaries in the input space for experiment (2), as in Figure 17. This
shows that the decision boundaries for the two hidden layer neurons were able to re-map the input
space into three distinct regions, each with a distinct set of output values from the hidden layer
neurons, as shown in Table 9. These unique sets of hidden output values match the expected class,

x1 x2 x3 class h1 h2 rounded region
0 0 1 0 0.98840949 0.94485492 11 2
0 1 1 1 0.06978661 0.99992827 01 3
1 0 0 0 0.98996648 0.94180994 11 2
1 0 1 1 0.99993854 0.06870401 10 1
1 1 0 1 0.07986793 0.99992406 01 3
1 1 1 0 0.93469969 0.98361150 11 2

Table 9: The hidden layer outputs for the 2-hidden-layer network.

enabling the output layer to correctly classify the input data.

Question 3(c)(3)

The third experiment changes the following code snippet to use 1 hidden layer instead of 3:

29

Figure 17: The input space experiment (2) with two decision boundaries.

30

COS4852/A2S

number o f nodes i n the hidden laye r
num_hidden = 1

Given what we know about the input space, we do not expect this network to be able to be
successfully trained. After some experimentation with the training rate and number of training cycles,
one set of weights for the hidden neuron is:

w10 = -10.05
w11 = 8.63
w12 = 9.89
w13 = 8.68

Again, using the familiar equations for a plane in 3D-space,

w10 + w11x1 + w12x2 + w13x3 = 0

we can draw the decision boundary in the input space for experiment (3), as in Figure 18. This
shows that the single decision boundary for the one hidden layer network was unable to re-map
the input space into regions that each produce neuron outputs of one class only. The input values
(1, 1, 1) is incorrectly placed in a region of class 1. The output values of the hidden neuron is shown
in Table 10.

x1 x2 x3 class h1 rounded region
0 0 1 0 0.20218074 0 1
0 1 1 1 0.99980072 1 2
1 0 0 0 0.19405193 0 1
1 0 1 1 0.99929478 1 2
1 1 0 1 0.99979026 1 2
1 1 1 0 0.99999996 1 2

Table 10: The hidden layer outputs for the 1-hidden-layer network.

A network with a single hidden neuron is unable to learn the required classification, because it
cannot separate the input space sufficiently.

31

Figure 18: The input space for experiment (3) with the single decision boundary.

32

COS4852/A2S

Question 3(d)

Discuss the different activation functions that can be used in feedforward neural networks, how they
work, why they allow training to happen in various algorithms, and their pros and cons.

Discussion on Question 3(d)

Here is an excellent discussion on the topic on the nature of activation functions.

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

Another good website:

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

The simplest function to use in a neural network is the linear function:

flinear (net) = net

A multi-layer neural network that consist of only linear activation functions are used, the complete
network could be re-mapped to a single-layer network with linear activation functions. However, of
the hidden layer uses non-linear activation functions (such as the sigmoid function) the network
could be used to perform non-linear regression.

The most common activation function is the well-known sigmoid function:

fsigmoid(net) =
1

1 + e-net

This function is non-linear, has a positive derivative, and is asymptotic. Neural networks with
activation functions with these properties could be trained using the BACKPROPAGATION algorithm,
and learn to closely approximate any function. However, the sigmoid function can have negative
output values, and can therefore map to output values close to zero, which in turn create very small
weight update values, therefore causing the training to proceed extremely slowly.

This problem can be resolved by using the tanh activation function:

ftanh(net) = 1− tanh2(net)

It has the same properties as the sigmoid activation function, but always has positive output values,
which avoids the trap of very small weight update values.

Question 3(e)

Find and read the following two articles, by Cybenko and Hornik:

Cybenko, G. (1989) “Approximations by superpositions of sigmoidal functions”, Mathematics of
Control, Signals, and Systems, 2(4), 303-314. doi:10.1007/BF02551274

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=
rep1&type=pdf

33

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf

Kurt Hornik (1991) “Approximation capabilities of multilayer feedforward networks”, Neural Networks,
4(2), 251-257. doi:10.1016/8093-6080(91)90009-T

http://cognitivemedium.com/magic_paper/assets/Hornik.pdf

Discuss what kind of functions can be represented by feed-forward neural networks, and what sort
of network structures are needed.

Discussion on Question 3(e)

The short answer is that a feedforward neural network that uses sigmoid activation functions can
closely approximate any continuous function. The above articles go into great depth to provide the
proof of this.

A detailed visual discussion on why this is the case is in Chapter 4 of Michael Nielsen’s online book
on Neural Networks and Deep Learning (http://neuralnetworksanddeeplearning.com/
chap4.html). The Wikipedia page on the Universal Approximation Theorem is also informative
(https://en.wikipedia.org/wiki/Universal_approximation_theorem).

Question 3(f)

Discuss the problem of local minima in neural network training, and techniques to ensure optimal
convergence.

Discussion on Question 3(f)

A particular classification problem that a BACKPROPAGATION neural network is trained on, may have
(usually) an infinite number of solutions, many of which are not the optimal solution, and some of
these could be really bad solutions. BACKPROPAGATION is essentially of finding a solution using
gradient descent, which means that it could find a local minimum at some point in the training
process and that the subsequent weight changes are not large enough to escape the local minimum.
This local minimum may not the optimal solution and may even be a particularly bad solution.

There are a number of techniques to try and avoid local minima, or to escape those that are
encountered. Stochastic learning vs. batch learning is one aspect that is often looked at (read up
on these modes of BACKPROPAGATION learning), where stochastic learning reduces the chance
of getting stuck in a local minimum. One solution is to add a momentum parameter, which uses
the previous weight update to keep the direction of change fairly stable. Other approaches uses
techniques to add noise to weight changes to ‘shake’ the solution out of a local minimum, which is
referred to as simulated annealing.

A related problem is that of over-fitting, where the BACKPROPAGATION network tends to fit the
solution function to the training very exactly, with the result that a new instance of the same class
can be classified incorrectly. The network fails to generalise well. There are two main approached
to countering this. Cross-validation, by separating the data into a training set and a smaller test set.
is one. The total network error is calculated using the test data set, and the training stopped when
this error is sufficiently low, but starts increasing again, while the total error using the training set is
still decreasing. The second technique is using weight decay, by slowly changing the rate at which

34

http://cognitivemedium.com/magic_paper/assets/Hornik.pdf
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
https://en.wikipedia.org/wiki/Universal_approximation_theorem

COS4852/A2S

weights are updated, as training progresses. This will keep weight values small, and also fits well
with the annealing technique to avoid local minima.

Question 3(g)

Read the Wikipedia page on Autoencoders:

https://en.wikipedia.org/wiki/Autoencoder

Feedforward neural networks typically consist of 3 layers, with the hidden (middle) layer effectively
being able to learn hidden representations in the data. In this context, search for the 8×3×8 neural
network structure, also called the identity function (give the URL for your source). Use the 8×3×8
neural network structure to discuss how feed-forward networks learn hidden representations in the
context of autoencoders.

Write your own code (in any programming language) that will replicate the 8×3×8 experiment. Report
on your experience with this.

Discussion on Question 3(g)

An interesting aspect of feedforward neural network, using the BACKPROPAGATION training algorithm,
is that only the output layer weights are directly constrained by the training data. The hidden layer
can adapt its weights in any way that find the solution, and often the hidden layer outputs reveal that
the network learned an intermediate set of representations, that show properties of the input space
that may not be immediately apparent.

The 8×3×8 encoder, or identity function mapping, is a good example to illustrate this.

Consider a neural network consisting of 8 inputs, 3 hidden layer neurons, and 8 output neurons that
is trained to learn the function in Table 11.

inputs outputs
10000000 → 10000000
01000000 → 01000000
00100000 → 00100000
00010000 → 00010000
00001000 → 00001000
00000100 → 00000100
00000010 → 00000010
00000001 → 00000001

Table 11: The identity function.

Since there are only 3 hidden layer neurons the network must re-map the 8 inputs to a set of 3
hidden layer neurons, which are then mapped by the output layer onto the desired outputs. This
means that the hidden layer must learn a new encoding of the the inputs. A Python program similar
to the one used in Question 3(c) was trained to learn the identity function. Table 12 show the output
from the three hidden layer neurons of this network. The table shows that some output values are

35

https://en.wikipedia.org/wiki/Autoencoder

inputs hidden outputs hidden re-mapped
10000000 0.56193951 0.99782185 0.01584416 110
01000000 0.00119330 0.53053587 0.00386037 010
00100000 0.00192434 0.00288832 0.90070578 001
00010000 0.00214312 0.99275195 0.99651131 011
00001000 0.99337806 0.00221516 0.99665411 101
00000100 0.99291924 0.39265810 0.00357696 100
00000010 0.38169448 0.00176780 0.00720031 000
00000001 0.99772615 0.99675162 0.98769268 111

Table 12: The identity function as learned by a BACKPROPAGATION network written in Python.

far from the asymptotic values of the sigmoid function.

Even though it seems obvious that since there exist a 3-bit binary representation for the 8 input
patterns, it is not all that easy to get a neural network to learn this. The main reason for this is
that the 3-bit representation is one of the most compact forms of representing the first 8 numbers.
Autoencoders used on real data is often built with multiple (deep) layers, and with some redundancy
built in. These also require a lot of experimentation with the number of layers, number of neurons
per layer, and the choice of activation functions in each layer. It helps if the network designer (data
scientist) has a good feel for the structure of the data.

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail

© Unisa 2023

36

	INTRODUCTION
	Assignment 2

