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1 INTRODUCTION

This document discusses the questions in Assignment 1 for COS4852 for 2023.

Each question (except Q1 = 10 marks) will be assigned a mark out of 100 and the total mark for the
assignment is then calculated out of (10 + (5× 100)) = 510.

When we mark the question we want to see that YOU understand the work. Simply copying or
regurgitating other peoples’ work (from the web, previous solutions, other students’ work) does not
show that YOU understand the work. Show ALL your assumption, definitions, variables, and full
calculations.

2 Assignment 1

Question 1

Find and download the following online textbooks on Machine Learning:

• Introduction to Machine Learning, Nils J. Nilsson, 1998.

• A first encounter with Machine Learning, Max Welling, 2011.

Give the complete URL where you found these textbooks, as well as the file size of the PDF you’ve
downloaded.

Here are the links to the books:

http://ai.stanford.edu/~nilsson/MLBOOK.pdf 1855 Kb
https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf 416 Kb

10 marks for complete and correct URL and size
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Question 2

Read Nilsson’s book, Chapter 2. Summarise the chapter in 2-4 pages in such a way that you can
show that you thoroughly understand the concepts described there. Use different example functions
from the ones in the book to show that you understand the concepts.

Answers are marked individually.

Decision lists are a way to partition a space using Boolean expressions in Disjunctive Normal Form
(DNF), and form the basis of understanding binary decision trees, which give a more restrictive
division than decision lists. The mapping of DNF to decision lists are also relevant to Question 5.

• http://www.cs.utexas.edu/~klivans/f07lec3.pdf

Discusses DNF, decision trees, and decision lists.

• http://www.cdam.lse.ac.uk/Reports/Files/cdam-2005-23.pdf

Discusses the mapping between Boolean functions and decision lists, as well as some theory.

Linear separability is an important concept in many machine learning algorithms, but especially so
in neural networks, the subject of your next task and assignment 2. See the following resources on
this topic:

• http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

Short and concise discussion.

• https://stackoverflow.com/questions/13976565/neural-networks-what-does-linearly-separable-mean

Informal discussion.

• https://onlinecourses.science.psu.edu/stat857/node/240

Adds the notions of the hyperplane and support vectors.

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail
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Question 3

Read Chapter 5 of Welling’s book. Do some research on the k-nearest neighbour classification
algorithm and write a 2-page report on how the algorithm works. Your report should include a
detailed example, with all calculations shown.

A brief summary of the k-NEAREST NEIGHBOURS algorithm

The k-NEAREST NEIGHBOURS (kNN) algorithm is one of the simplest, though widely useful, classifi-
cation algorithms. It works on the principle that instances of the same class tend to cluster together.
In other words, a new instance is very likely to be of the same class as those closest to it.

A target function f : X → Y , is represented by a set of n instances 〈Xi , Yi〉, where X = {X1, X2, ... , Xn}
are a set of attribute values. These attribute values could be coordinates, or any combination of
values that belong to a specific instance. Yi typically represent a single class value that matches
the attribute values of Xi . When a new instance Xj = {Xj1, Xj2, ... , Xjn}, of unknown class has to
be classified, kNN calculates the distance between Xj and each of the other instances. The k
nearest neighbours are selected, and their class values counted to determine the majority class.
This majority class is then assigned to the new instance Xj .

The distance measure is selected to match the data types of the instance attributes. These include
the Euclidean distance, and the Manhattan distance. There are several others that are used. For
example, if the attributes are coordinate values, the Euclidean distance measure works well.

The value of k is also critical to the algorithm. With k = 1 the new instance will be assigned the class
of the nearest neighbour, which may be an outlier, and therefore not be an accurate representation
of the classes. Small values of k may lead to overfitting. Larger values of k can lead to underfitting. If
k = n, the class value of all the instances are used, and there is no point in calculating the distances.
Clearly there are values of k that are close to optimal. Statistical methods such as cross-validation
can be used for this. A simple heuristic value, that is often used is k =

√
n, or more specifically the

nearest uneven integer to
√

n. The value of k should be uneven so that there is always a majority
outcome.

An example will illustrate the workings of the algorithm. Consider the instance set in Figure 1,
showing 8 instances of two classes A and B. A new instance P9 at (2, 1) has an unknown class.

Use kNN to determine the new class for C. Using the heuristic k should be chosen as k = 3, but
to illustrate the effect of different distance measures, use k = 5. In other words find the 5 nearest
neighbours to C.

Use the Euclidian distance measure

dEuclidian(p, q) =
√

(px − qx )2 + (py − qy )2

to calculate the distance between P9 and the other 8 instances, and rank them according to the
closest distance.

8



COS4852/A1-S

x

y

-5-5 5 10

-5-5

5

10 Class A
Class B
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Figure 1: Example instance space for kNN with two classes A and B.

instance dEuclidian(P9, Pi) class rank
P1 5.385 A 7
P2 3.606 A 5
P3 1.000 A 1
P4 2.000 A 2
P5 3.000 B 4
P6 2.236 B 3
P7 8.485 B 8
P8 4.000 B 6

With k = 5, the 5 closest neighbours gives 3 instances of class A and 2 instances of class B. The
majority is therefore class A, hence P9 is assigned class A. The dashed circle in Figure 1, with
radius r = 3.606 shows the minimum Euclidian radius that encloses the 5 closest neighbours to P9.

Now use the Manhattan distance measure

dManhattan(p, q) = |px − qx | + |py − qy |

to do the same calculation (read up on the Hamming and the Cityblock distance measures).
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instance dEuclidian(P9, Pi) class rank
P1 7 A 7
P2 5 A 6
P3 1 A 1
P4 2 A 2
P5 3 B 3
P6 3 B 4
P7 12 B 8
P8 4 B 5

Now, the 5 closest neighbours gives a different result, with 2 instances of class A and 3 instances
of class B. The majority is therefore class B, hence P9 is assigned class B. The cyan diamond in
Figure 1, with Manhattan radius r = 4 shows the minimum Manhattan radius that encloses the 5
closest neighbours to P9. This illustrates the importance of choosing the correct distance measure
for the data set. If x and y are simply coordinates, the Euclidian distance measure is appropriate,
but if x and y represent natural numbers (say x are the number of petals on a flower, and y is the
number of sees lobes), then the Manhattan distance may be a better choice.

It is often a good idea to normalise the data, so that all attributes fall within the same range, i.e.
have the same scale so that distance measures compares the attributes equally.

Here are some resources you should consult on this topic:

• http://www.saedsayad.com/k_nearest_neighbors.htm

Discusses the basic algorithm and some distance measures and the normalisation process.

• %http://www.statsoft.com/textbook/k-nearest-neighborshttps://stats.libretexts.org/

Bookshelves/Computing_and_Modeling/RTG%3A_Classification_Methods/3%3A_K-Nearest_

Neighbors_(KNN)

This document is part of series of open-access text for tertiary education. Keep in mind that
the article uses both a probabilistic and a distance approach to classifiying new data points.
Don’t get confused between the two. Also, read the paragraph about the effect of k carefully.

• http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

Gives a good overview of the curse of dimensionality and the problem of overfitting, which
are problems that can occur with classification methods. It also discusses the usefulness of
cross-validation.

Do not use the Wikipedia entry on kNN. It ignores the basic algorithm and focuses on the more
complex variants of the algorithm, and may be confusing.

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism
50 for a fair understanding
60-70 for understanding and clear well defined examples
80+ for exceptional detail
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Question 4

Let X be an instance space consisting of points in the Euclidian plane with integer coordinates (x , y ),
with positive and negative instances as shown in Figure 2.

x

y

-10 -5 5 10

-10

-5

5

10 Positive instances:
(5, 5)

(−6, 4)
(−3,−4)
(2,−4)

Negative instances:
(−1, 2)
(−2, 0)
(6, 7)

(8,−8)

Figure 2: Instance space with positive and negative instances.

Let H be the set of hypotheses consisting of origin-centered donuts. Formally, the donut hypothesis
has the form h ← 〈a <

√
x2 + y2 < b〉, where a < b and a, b ∈ Z ( Z is the set of non-negative

integers, {0, 1, 2, 3, ...} ). This can be shortened to h← 〈a, b〉.

An example of a donut hypothesis is h← 〈2, 5〉 and is shown in Figure 3. Notice that this hypothesis
does not explain the data correctly, since there are both positive and negative instances inside the
donut and neither does the donut contain all the positive or all the negative instances, exclusively.

(a) What is the S-boundary set of the given version space? Write out the hypotheses in the form
given above and draw them.

(b) What is the G-boundary set of the given version space? Write out the hypotheses in the form
given above and draw them.

(c) Suppose that the learner now suggests a new (x , y) instance and asks the trainer for its
classification. Suggest a query guaranteed to reduce the size of the version space, regardless
of how the trainer classifies it. Suggest one that will not reduce the size of the version space,
regardless of how the trainer classifies is. Explain why in each case.

11
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Figure 3: Instance space with a donut hypothesis h← 〈2, 5〉.
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(d) The donuts are one of many possible hypothesis spaces that could explain this data set.
Propose one alternative hypothesis space and explicitly define its parameters as was done
using a and b for the donuts. Choose an instance from your hypothesis space that separates
the given data. Write out this hypothesis and sketch it.

Here are some resources you could consult on this topic:

• http://cse-wiki.unl.edu/wiki/index.php/Concept_Learning_and_the_General-to-Specific_

Ordering

• http://www.cs.northwestern.edu/~pardo/courses/mmml/lectures/NU%20EECS%20349%20Fall%

2009%20topic%201%20-%20version%20spaces.pdf

• http://www.ccs.neu.edu/home/rjw/csg220/lectures/version-spaces.pdf

Discussion on (a) and (b):

Assume (for purposes of explaining the answer) that the instance space is limited to−10 ≤ x , y ≤ 10.
The hypothesis space will then be all the donuts that can be drawn with 0 ≤ a ≤ 10 and 0 ≤ b ≤ 10,
with a < b (remember that a, b ∈ Z). A quick calculation will show that there are 55 possible
hypotheses given this limited instance space. Figure 4 shows 9 examples of the 55 possible
hypotheses.

If the instance space is not limited there are an infinite number of hypotheses. The final answer
shows that the assumed limitation makes no difference. Most real-world problems have infinite
instance- and search spaces. In general care need to be taken on the assumptions so that the
models will still be valid.

To help understand some of the concepts, the complete set H55 of all 55 possible hypotheses is:

H55 = { 〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈0, 4〉, 〈0, 5〉, 〈0, 6〉, 〈0, 7〉, 〈0, 8〉, 〈0, 9〉, 〈0, 10〉,
〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈1, 6〉, 〈1, 7〉, 〈1, 8〉, 〈1, 9〉, 〈1, 10〉,
〈2, 3〉, 〈2, 4〉, 〈2, 5〉, 〈2, 6〉, 〈2, 7〉, 〈2, 8〉, 〈2, 9〉, 〈2, 10〉,
〈3, 4〉, 〈3, 5〉, 〈3, 6〉, 〈3, 7〉, 〈3, 8〉, 〈3, 9〉, 〈3, 10〉,
〈4, 5〉, 〈4, 6〉, 〈4, 7〉, 〈4, 8〉, 〈4, 9〉, 〈4, 10〉,
〈5, 6〉, 〈5, 7〉, 〈5, 8〉, 〈5, 9〉, 〈5, 10〉,
〈6, 7〉, 〈6, 8〉, 〈6, 9〉, 〈6, 10〉,
〈7, 8〉, 〈7, 9〉, 〈7, 10〉,
〈8, 9〉, 〈8, 10〉,
〈9, 10〉}

General-to-specific ordering of hypotheses In order to sequence the hypotheses from ‘most
specific’ to ‘most general’ decide what is meant by ‘more specific’ and ‘more general’ (and ‘less
general’ and ‘less specific’). In other words decide how to define the more general than or equal to
and more general than relations.
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h← 〈0, 1〉 h← 〈0, 2〉 h← 〈0, 3〉

h← 〈1, 4〉 h← 〈1, 6〉 h← 〈1, 9〉

h← 〈3, 5〉 h← 〈3, 7〉 h← 〈6, 10〉

Figure 4: 9 examples of the 55 possible donut hypotheses.

14



COS4852/A1-S

Depending on the definition of these relations different answers will result. Assume that larger
donuts are more general than smaller donuts. In this simple case this is a fair assumption to make
since no more information about the data is available. Smaller donuts is also a valid choice. Look at
three possible ways of defining the size of donuts:

1. The value of a - if b stays constant, smaller a-values produce larger donuts.

2. The value of b - if a stays constant, larger b-values produce larger donuts.

3. The surface area A of the donut - this is the obvious way of measuring one donut to be larger
than another, but is slightly more complex to calculate.

The last two measures are simplified mechanisms to give an approximate measure of the relative
sizes of donuts and is less complex to calculate.

Pick four hypotheses to show how these three measures work:

h〈0,1〉 ← 〈0, 1〉 A = π a = 0 b = 1
h〈3,9〉 ← 〈3, 9〉 A = 72π a = 3 b = 9
h〈4,9〉 ← 〈4, 9〉 A = 65π a = 4 b = 9
h〈4,10〉 ← 〈4, 10〉 A = 86π a = 4 b = 10

Let us look at the last two measures, since they are slightly simpler to calculate.

Smaller a-values Using a to rank the four chosen hypotheses from most specific to most general,
the result is:

h〈0,1〉 <g h〈3,9〉 <g h〈4,9〉 =g h〈4,10〉

In other words, by this measure, the last two hypotheses are equally general.

Larger b-values Using b to rank the four chosen hypotheses from most specific to most general,
gives:

h〈0,1〉 <g h〈3,9〉 =g h〈4,9〉 <g h〈4,10〉

In other words, by this measure, the middle two hypotheses are equally general.

15



Surface area Using the surface area of the donut is the intuitive choice (but is slightly more
complex to calculate) and gives us the following order:

h〈0,1〉 <g h〈3,9〉 <g h〈4,9〉 <g h〈4,10〉

The obvious lesson here is that how ‘more specific’ and ‘more general’ is measured has an effect
on the order of hypotheses. In other words, when comparing two hypotheses with each other,
which one is ‘more general’ than the other one is determined by how specificity is measured. Three
different measures were applied: smaller a-values, smaller b-values and the surface area of the
donuts.

Using surface area as a criterion to determine whether a specific hypothesis is more general than
another and apply it to the 55 hypotheses for this problem (and limited instance space) gives the
sequence as in Table 1.

h〈0,1〉 : A = π12 − π02 = 1π
h〈1,2〉 : A = π22 − π12 = 3π
h〈0,2〉 : A = π22 − π02 = 4π
h〈2,3〉 : A = π32 − π22 = 5π
h〈3,4〉 : A = π42 − π32 = 7π
h〈1,3〉 : A = π32 − π12 = 8π
h〈0,3〉 : A = π32 − π02 = 9π
h〈4,5〉 : A = π52 − π42 = 9π
h〈2,4〉 : A = π42 − π22 = 11π
h〈5,6〉 : A = π62 − π52 = 11π
h〈6,7〉 : A = π72 − π62 = 13π
h〈1,4〉 : A = π42 − π12 = 15π
h〈7,8〉 : A = π82 − π72 = 15π
h〈0,4〉 : A = π42 − π02 = 16π
h〈3,5〉 : A = π52 − π32 = 16π
h〈8,9〉 : A = π92 − π82 = 17π

h〈9,10〉 : A = π102 − π92 = 19π
h〈4,6〉 : A = π62 − π42 = 20π
h〈2,5〉 : A = π52 − π22 = 21π
h〈1,5〉 : A = π52 − π12 = 24π
h〈5,7〉 : A = π72 − π52 = 24π
h〈0,5〉 : A = π52 − π02 = 25π
h〈3,6〉 : A = π62 − π32 = 25π
h〈6,8〉 : A = π82 − π62 = 28π
h〈7,9〉 : A = π92 − π72 = 32π
h〈2,6〉 : A = π62 − π22 = 32π
h〈4,7〉 : A = π72 − π42 = 33π
h〈1,6〉 : A = π62 − π12 = 35π
h〈0,6〉 : A = π62 − π02 = 36π

h〈8,10〉 : A = π102 − π82 = 36π
h〈3,7〉 : A = π72 − π32 = 38π
h〈5,8〉 : A = π82 − π52 = 39π
h〈6,9〉 : A = π92 − π62 = 45π
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h〈2,7〉 : A = π72 − π22 = 45π
h〈1,7〉 : A = π72 − π12 = 48π
h〈4,8〉 : A = π82 − π42 = 48π
h〈0,7〉 : A = π72 − π02 = 49π

h〈7,10〉 : A = π102 − π72 = 51π
h〈3,8〉 : A = π82 − π32 = 55π
h〈5,9〉 : A = π92 − π52 = 56π
h〈2,8〉 : A = π82 − π22 = 60π
h〈1,8〉 : A = π82 − π12 = 63π
h〈0,8〉 : A = π82 − π02 = 64π

h〈6,10〉 : A = π102 − π62 = 64π
h〈4,9〉 : A = π92 − π42 = 65π
h〈3,9〉 : A = π92 − π32 = 72π

h〈5,10〉 : A = π102 − π52 = 75π
h〈2,9〉 : A = π92 − π22 = 77π
h〈1,9〉 : A = π92 − π12 = 80π
h〈0,9〉 : A = π92 − π02 = 81π

h〈4,10〉 : A = π102 − π42 = 86π
h〈3,10〉 : A = π102 − π32 = 91π
h〈2,10〉 : A = π102 − π22 = 96π
h〈1,10〉 : A = π102 − π12 = 99π
h〈0,10〉 : A = π102 − π02 = 100π

Table 1: The 55 hypotheses, ordered from most specific
(top) to most general (bottom).

Notice that there are some hypotheses that are equally general to one or more other hypotheses,
but that most are strictly more specific or more general than any other hypotheses. For almost
all problems that are encountered (even textbook examples) it is impossible to enumerate the
hypotheses like this.

Keep in mind that none of the hypotheses have been tested to determine if it explains the data. This
is a simple ordering of hypotheses without considering the instances. Figure 5 shows an incomplete
diagram of the hypothesis space using surface area a criteria for ordering the hypotheses from most
general to most specific. In the discussion that follows the surface area measure is used.

FIND-S There is now enough information to attempt to find the maximally specific hypothesis.
FIND-S ignores all negative instances so only the four positive instances need to be considered.

The sequence of instances should not effect the outcome of the algorithm if there are no errors in
the data. After observing the first positive instance (5, 5) pick the smallest donut that will contain the
instance (remember that smaller donuts are more specific), which turns out to be (and is shown in
Figure 6)

h← 〈7, 8〉
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Figure 5: Partial hypothesis space using surface area as criterion. Area shown on the right.
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Figure 6: FIND-S after the first and second instances (5, 5) and (−6, 4) produce h← 〈7, 8〉

After observing the second positive instance (−6, 4) the current hypotheses still explains the data
and the hypothesis remains the same.

After observing the third positive instance (−3,−4) the current hypothesis is not general enough
and needs to be expanded to a larger donut. Keep in mind that in the chosen definition of the donut
the edge of the donut is not included in the hypotheses. This gives:

h← 〈4, 8〉

The fourth positive instance does not require any further expansion of the hypotheses. The maximally
specific hypothesis for this instance space is therefore:

h← 〈4, 8〉

with A = 48π.

FIND-S does not find all the hypotheses that are consistent with the data. In the example, FIND-S
only finds the smallest possible donut that is consistent with the data (i.e. includes all the positive
instances). There may be more donuts that explain the data.

List-Then-Eliminate Since all the hypotheses are known for this example this algorithm can be
applied to find all the consistent hypotheses for this instance space. The result are the following four
hypotheses (shown in Figure 8):

h1 ← 〈3, 8〉
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Figure 7: FIND-S after the third and fourth instances (−3,−4) and (2,−4) produce h← 〈4, 8〉

h2 ← 〈4, 8〉

h3 ← 〈3, 9〉

h4 ← 〈4, 9〉

FIND-G In a similar fashion to the FIND-S algorithm calculate the maximally general hypothesis.

The algorithm is initiated with the most general hypothesis and after observing each negative
instance the hypothesis is made more specific until the algorithm terminates with the maximally
general hypothesis. Note that positive instances have no effect on the hypotheses in FIND-G, just
as negative instances play no role in FIND-S.

Start with the most general hypothesis, in this case h← 〈0, 10〉.

After observing the first negative instance (−1, 2) pick the largest donut that will contain the instance
(remember that larger donuts are more general), which turns out to be

h← 〈3, 10〉

and is shown in Figure 9.

After observing the second negative instance (−2, 0) the current hypotheses still explains the data
and the hypothesis remains the same.
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h1 ← 〈3, 8〉, A = 55π
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h2 ← 〈4, 8〉, A = 48π
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h3 ← 〈3, 9〉, A = 72π
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h4 ← 〈4, 9〉, A = 65π

Figure 8: Find-Then-Eliminate results in four consistent hypotheses.
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Figure 9: FIND-G after the first and second instances (−1, 2) and (−2, 0) produce h← 〈3, 10〉
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Figure 10: FIND-G after the third and fourth instances (6, 7) and (8,−8) produce h← 〈3, 9〉
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After observing the third negative instance (6, 7) the current hypothesis is not specific enough and
needs to be contracted to a smaller donut. The result is:

h← 〈3, 9〉

The fourth negative instance does not require any further contraction of the hypotheses. The
maximally general hypothesis for this instance space is therefore:

h← 〈3, 9〉

with A = 72π. This means that this is also the maximally general hypothesis for this instance space.

S- and G-boundary sets Since there are only one maximally specific hypothesis and one maxi-
mally general hypothesis for this instance space this means that the S- and G-boundary sets each
contain one element, namely:

S = {〈4, 8〉}

G = {〈3, 9〉}

The S- and G-boundary sets are shown in Figure 11.
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S = {〈4, 8〉}
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G = {〈3, 9〉}

Figure 11: S- and G-boundary sets.
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Discussion on (c)

Any new instance that would not fit into any current hypothesis that explains the data will force a
change in the S- or G-boundary sets. For example, a new positive instance at (−3,−2) will force
the S-boundary to expand to S = {〈3, 8〉}. Similarly a new negative instance at (5, 7) will shrink the
G-boundary set to G = {〈3, 8〉}.

Discussion on (d)

There are many possible alternative hypotheses (actually an infinite number). The following discus-
sion shows some possibilities.

Origin centered rectangular ‘donuts’ Define an origin centered rectangular donut as a rectan-
gular area with a smaller rectangular area inside subtracted from the first, where the center of the
rectangles coincide with the origin of the coordinate system. A hypothesis would then take the form:

h← (a < |x | < b) ∧ (c < |y | < d)

where a, b, c, d ∈ Z.

One (there are more) specific hypothesis that will explain the data is:

h← (4 < |x | < 7) ∧ (3 < |y | < 6)

which can be shortened to
h← 〈4, 7, 3, 6〉

This hypothesis is illustrated in Figure 12. This form of hypothesis uses four parameters instead of
the two for the normal donuts, hence having some effect on the computational complexity of finding
a solution.

Figures 13 to 15 show a few more examples of possible hypotheses. Try to define these hypotheses
formally as was done with the donuts and the rectangular ‘donuts’.

Further notes

Note that all the hypotheses discussed so far had the edges excluded. This was simply a choice of
how the hypothesis was defined and the edges may as well have been included. Donuts with the
edges included are defined as:

h← 〈a ≤
√

x2 + y2 ≤ b〉

where a < b and a, b ∈ Z. Figure 16 shows such a hypothesis with the instance (−3,−4) falling on
the edge of the hypothesis. Using solid or dashed lines is a convention to indicate whether or not
the edge is included in the hypothesis or not.

This choice of hypothesis will have an effect in the FIND-S algorithm. Considering the third negative
instance, the hypotheses becomes

h← 〈5, 8〉
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Figure 12: First alternative hypothesis: rectangular donuts.
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Figure 13: Second alternative hypothesis: U-shaped areas, with edges parallel to the axes.
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Figure 14: Third alternative hypothesis: arbitrarily-shaped areas.
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Figure 15: Fourth alternative hypothesis. Origin-centered oval donuts. This requires four parame-
ters.
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Figure 16: Donut hypothesis with edges included.

However, the fourth negative instance expands the hypothesis and the maximally specific hypothesis
remains the same as before.

Further exercises

Here are some exercises you could try to make sure that you understood the concepts discussed
and are able to do the calculations.

• Complete the version space diagram (Figure 5). Find the S- and G-boundary sets of the
hypotheses in this diagram.

• Find the S- and G-boundaries using the ‘smaller a’ criterion for origin-centered donuts.

• Calculate and draw the version space diagram for the ‘smaller a’ and the ‘larger b’criteria.

• Find the S- and G-boundaries using the ‘larger b’ criterion for origin-centered donuts.

• Repeat the exercises above using one of the alternative hypotheses.

• What are the pros and cons of the different measures by which specificity is measured?

• How are the first and second alternative hypotheses equivalent?
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Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism,
or answers are correct, but have not shown complete workings
50 correct and sufficient workings
60-70 correct and complete workings
80+ indicating thorough understanding of the work
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Question 5

Give binary decision trees to represent the following Boolean functions:

(a) f1(A, B) = ¬A ∧ B

(b) f2(A, B, C) = [A ∧ B] ∨ C]

(c) f3(A, B) = A Y B

(d) f4(A, B, C, D) = [A ∨ B] ∧ [C ∨ D]

Remember that there is a difference between a graph and a tree.

Read: https://www.geeksforgeeks.org/difference-between-graph-and-tree/

The symbol Y represents the Boolean operator for XOR (exclusive-or). For this exercise you do not
need to do the Gain or Entropy calculations. There is a direct mapping between a Boolean function
and its corresponding binary decision tree. The binary decision tree can usually by simplified as
well to produce a simpler, more compact tree. Do not just write down the final, simplified tree. Show
how you do the simplification.

Here are resources you could consult on this topic - they are also a good introduction to material for
the next question:

• https://www.cs.cmu.edu/~fp/courses/15122-f10/lectures/19-bdds.pdf

• http://cs.nyu.edu/~dsontag/courses/ml12/slides/lecture11.pdf

When constructing a decision tree (binary decision trees included) the choice of variable to use as
the root node (and any subsequent nodes) effect the structure, accuracy and simplicity of the tree.
This is the most important feature of decision tree learning algorithms, such as ID3. They choose
the best variable at each node. In this question DO NOT use any algorithms. The aim of here is to
learn that there is a direct correlation between a Boolean function and a binary decision tree.

Discussion on (a)

Boolean function given:
f1(A, B) = ¬A ∧ B

The truth table for this Boolean function is given in Table 2.

Start by choosing A as the root node. This gives us the binary decision tree as in Figure 17. On the
diagram you can see the mapping between specific parts of the truth table and the binary decision
tree. Each leaf node corresponds to one row in the truth table, while the level above the leaf nodes
correspond to two rows in the truth table, etc. By merging leaf nodes with the same value the tree
can be simplified, as in Figure 18.

Using B as the start node results in a different binary decision tree. In this particular case the tree
turns out to be as simple as the first. This is not the case for all decision trees.

The binary decision tree starting with B is shown in Figure 19.
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A B ¬A f1
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Table 2: Truth table for f1.

A

B B

0 1 0 0

0 1

0 1 0 1

A B f1
? ? ?

A B f1
0 ? ?
0 ? ?

A B f1
1 ? ?
1 ? ?

A B f1
0 0 0 A B f1

0 1 1
A B f1
1 0 0

A B f1
1 1 0

Figure 17: A binary decision tree for f1 starting with A.

A

B 0

0 1

0 1

0 1

Figure 18: A simplified binary decision tree for f1(A, B) = ¬A ∧ B starting with A.
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B

0 A

1 0

0 1

0 1

Figure 19: A binary decision tree for f1 starting with B.

Discussion on (b)

Boolean function given:

f2(A, B, C) = [A ∧ B] ∨ C]

The truth table for this Boolean function is given in Table 3.

A B C A ∧ B f2
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

Table 3: Truth table for f2.

Choose A for the root node. This produces the binary decision tree as in Figure 20.

A simplified binary decision tree for f2 is shown in Figure 21. Work out the different combinations of
binary decision trees that are possible and see which result in the most compact tree when they are
simplified. See if you agree that the simplified tree shown for f2 is the simplest possible tree or not.
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A

B B

C C C C

0 1 0 1 0 1 1 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Figure 20: A binary decision tree for f2 starting with A.

B

C C

0 1 A 1

0 1

0 1

0 1 0 1

0 1

Figure 21: A simplified binary decision tree for f2, using node sequence B, C, A.

32



COS4852/A1-S

Discussion on (c)

Boolean function given:
f3(A, B) = A Y B

The truth table for this Boolean function is given in Table 4.

A B f3
0 0 0
0 1 1
1 0 1
1 1 0

Table 4: Truth table for f3.

Choosing A for the root node, produces the binary decision tree as in Figure 22.

A

B B

0 1 1 0

0 1

0 1 0 1

Figure 22: A binary decision tree for f3 starting with A.

Similarly, the binary decision tree for f3 starting with B produces the tree as in Figure 23.

B

A A

0 1 1 0

0 1

0 1 0 1

Figure 23: A binary decision tree for f3 starting with B.

What is immediately apparent from these trees are that they cannot be simplified further.
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Discussion on (d)

Boolean function given:
f4(A, B, C, D) = [A ∨ B] ∧ [C ∨ D]

The truth table for this Boolean function is given in Table 5.

A B C D [A ∨ B] [C ∨ D] f4
0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 0 0 1 0 0
1 0 0 1 1 1 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 0 0
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

Table 5: Truth table for f4.

Start by choosing A for the root node. This produces the binary decision tree as in Figure 24. This
tree has not been simplified. Figures 25 to 27 show the steps in simplifying this specific decision
tree. Notice that the last tree has two identical sub-trees, but it cannot be further simplified.

Look at the results of the next question, and compare the two trees. What do you see?

Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism,
or answers are correct, but have not shown complete workings
50 correct and sufficient workings
60-70 correct and complete workings
80+ indicating thorough understanding of the work
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A

B B

C C C C

D D D D D D D D

0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 24: A binary decision tree for f4 starting with A.

A

B B

C C C C

0 0 D 0 D 1 D 1

0 1 0 1 0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

Figure 25: Step 1 in simplifying the binary decision tree for f4.
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A

B B

0 C C C

D 0 D 1 D 1

0 1 0 1 0 1

0 1

0 1 0 1

0 1 0 1 0 1

0 1 0 1 0 1

Figure 26: Step 2 in simplifying the binary decision tree for f4.
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B

0 C

C

D 0

D 1

0 1

0 1
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0 1

0 1

0 1

0 1

Figure 27: Step 3 in simplifying the binary decision tree for f4.
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Question 6

Use the ID3 algorithm to construct a decision tree for the data in Table 6. Show all your calculations,
including all the steps of the Gain and Entropy calculations. Show the formulas that you use. Clearly
explain your choices.

A B C D f5
F F F F no
F F F T no
F F T F no
F F T T no
F T F F no
F T F T yes
F T T F yes
F T T T yes
T F F F no
T F F T yes
T F T F yes
T F T T yes
T T F F no
T T F T yes
T T T F yes
T T T T yes

Table 6: Truth table for f5.

Here are some resources you could consult on this topic (focus on the ID3 algorithm):

• https://medium.com/deep-math-machine-learning-ai/chapter-4-decision-trees-algorithms-b93975f7a1f1

• https://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/2.htm

• http://www.ke.tu-darmstadt.de/lehre/archiv/ws0809/mldm/dt.pdf

• https://cis.temple.edu/~ingargio/cis587/readings/id3-c45.html

Discussion

Table 6 shows that the target function, f5 can take on two possible values, yes or no. There are 16
examples, of which 7 result in f5 = no and 9 gives f5 = yes, in other words: S ≡ [7no, 9yes] There are
4 attributes (A, B, C, D) whose combination of values determine the value of the target attribute, f5.

Calculate the entropy of the data set:

Entropy (S) ≡
c∑

i=1

−pi log2(pi)

= −pno log2(pno)− pyes log2(pyes)
= −7/16 log2(7/16)− 9/16 log2(9/16)
= 0.522 + 0.467
= 0.989
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An Entropy value close to 1 means that the data is very well structured. Most real-world data sets
are sparse and not always as well structured, which will result in lower Entropy values. Completely
random data should have an Entropy value of 0.

Next, calculate the Information Gain of the subsets of the data, as it is sorted by the values each
attribute can take.

The attribute A can take on two values: F or T .

Values(A) = F , T
SA = [7no, 9yes]

SA=F ← [5no, 3yes]
SA=T ← [2no, 6yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute A:

Entropy (Sno) = −5/8 log2(5/8)− 3/8 log2(3/8)
= 0.954

Entropy (Syes) = −2/8 log2(2/8)− 6/8 log2(6/8)
= 0.811

Calculate the information gained when dividing the data by using the values of A:

Gain(S, A) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy(Sv )

= Entropy (S)− 7/16 Entropy (Sno)− 9/16 Entropy (Syes)
= 0.989− 7/16× 0.954− 9/16× 0.811
= 0.115

When we look at the divisions of the dataset using the other three attributes, B, C and D, we see
that the divisions are exactly the same.

Values(B) = F , T
SB = [7no, 9yes]

SB=F ← [5no, 3yes]
SB=T ← [2no, 6yes]

Values(C) = F , T
SC = [7no, 9yes]

SC=F ← [5no, 3yes]
SC=T ← [2no, 6yes]
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Values(D) = F , T
SD = [7no, 9yes]

SD=F ← [5no, 3yes]
SD=T ← [2no, 6yes]

This means that the Information Gain values will also be the same for these attributes:

Gain(S, B) = 0.115
Gain(S, C) = 0.115
Gain(S, D) = 0.115

Since there is no single attribute which has the highest gain value, we can choose any one as the
root node of the tree. Choose A as the root node.

A

? ?

F T

Figure 28: Leaf node of the decision tree for f5.
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The dataset is now divided into two subsets, using the values of attribute A, as in Tables 7 and 8.

A B C D f5
F F F F no
F F F T no
F F T F no
F F T T no
F T F F no
F T F T yes
F T T F yes
F T T T yes

Table 7: Truth table for f5,A=F

A B C D f5
T F F F no
T F F T yes
T F T F yes
T F T T yes
T T F F no
T T F T yes
T T T F yes
T T T T yes

Table 8: Truth table for f5,A=T

Therefore:
SA=F ≡ [5no, 3yes]

and
SA=T ≡ [2no, 6yes]

Calculate the entropy of the data set in Table 7, where A = F :

Entropy(SA=F ) ≡
c∑

i=1

−pi log2(pi)

= −pno log2(pno)− pyes log2(pyes)
= −5/8 log2(5/8)− 3/8 log2(3/8)
= 0.954

The attribute B can take on two values: F or T .

Values(B) = F , T
SA=F = [5no, 3yes]

SA=F ,B=F ← [4no, 0yes]
SA=F ,B=T ← [1no, 3yes]
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Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute B, when A = F :

Entropy(SA=F ,no) = −4/4 log2(4/4)− 0/4 log2(0/4)
= 0

Entropy (SA=F ,yes) = −1/3 log2(1/3)− 2/3 log2(2/3)
= 0.918

Calculate the information gained when dividing the data by using the values of B, when A = F :

Gain(SA=F ,B) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy(Sv )

= Entropy (SA=F )− 5/8 Entropy (SA=F ,no)− 3/8 Entropy (SA=F ,yes)
= 0.954− 5/8× 0− 3/8× 0.918
= 0.610

The attribute C can take on two values: F or T .

Values(C) = F , T
SA=F = [5no, 3yes]

SA=F ,C=F ← [3no, 1yes]
SA=F ,C=T ← [2no, 2yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute C, when A = F :

Entropy(SA=F ,no) = −3/4 log2(3/4)− 1/4 log2(1/4)
= 0.722

Entropy (SA=F ,yes) = −2/4 log2(2/4)− 2/4 log2(2/4)
= 1

Calculate the information gained when dividing the data by using the values of C, when A = F :

Gain(SA=F , C) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy (Sv )

= Entropy (SA=F )− 5/8 Entropy (SA=F ,no)− 3/8 Entropy (SA=F ,yes)
= 0.954− 5/8× 0.722− 3/8× 1
= 0.128
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The attribute D can take on two values: F or T .

Values(D) = F , T
SA=F = [5no, 3yes]

SA=F ,D=F ← [3no, 1yes]
SA=F ,D=T ← [2no, 2yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute D, when A = F :

Entropy(SA=F ,no) = −3/4 log2(3/4)− 1/4 log2(1/4)
= 0.722

Entropy (SA=F ,yes) = −2/4 log2(2/4)− 2/4 log2(2/4)
= 1

Calculate the information gained when dividing the data by using the values of C, when A = F :

Gain(SA=F , D) = Entropy(S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy (Sv )

= Entropy(SA=F )− 5/8 Entropy(SA=F ,no)− 3/8 Entropy(SA=F ,yes)
= 0.954− 5/8× 0.722− 3/8× 1
= 0.128

The highest gain value for the subset of the data where A = F , is attribute B, where:

Gain(SA=F ,B) = 0.610

The decision tree grows a new node B as in Figure 29.

A

B ?

? ?

F T

F T

Figure 29: Partial decision tree for f5.
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Calculate the entropy of the data set in Table 8, where A = T , and

SA=T ≡ [2no, 6yes]

Entropy (SA=T ) ≡
c∑

i=1

−pi log2(pi)

= −pno log2(pno)− pyes log2(pyes)
= −2/8 log2(2/8)− 6/8 log2(6/8)
= 0.811

The attribute B can take on two values: F or T .

Values(B) = F , T
SA=T = [2no, 6yes]

SA=T ,B=F ← [1no, 3yes]
SA=T ,B=T ← [1no, 3yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute B, when A = F :

Entropy (SA=T ,no) = −1/4 log2(1/4)− 3/4 log2(3/4)
= 0.811

Entropy(SA=T ,yes) = −1/4 log2(1/4)− 3/4 log2(3/4)
= 0.811

Calculate the information gained when dividing the data by using the values of B, when A = T :

Gain(SA=T ,B) = Entropy(S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy (Sv )

= Entropy(SA=T )− 2/8 Entropy (SA=T ,no)− 6/8 Entropy(SA=T ,yes)
= 0.954− 2/8× 0.811− 6/8× 0.811
= 0.143

The attribute C can take on two values: F or T .

Values(C) = F , T
SA=T = [2no, 6yes]

SA=T ,C=F ← [2no, 2yes]
SA=T ,C=T ← [0no, 4yes]
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Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute C, when A = T :

Entropy (SA=T ,no) = −2/4 log2(2/4)− 2/4 log2(2/4)
= 1

Entropy(SA=T ,yes) = −0/4 log2(0/4)− 4/4 log2(4/4)
= 0

Calculate the information gained when dividing the data by using the values of C, when A = F :

Gain(SA=T , C) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy(Sv )

= Entropy (SA=T )− 2/8 Entropy (SA=T ,no)− 6/8 Entropy(SA=T ,yes)
= 0.954− 2/8× 1− 6/8× 0
= 0.704

The attribute D has the same ratios of values as attribute C, and will therefore have the same Gain
value:

Gain(SA=T , D) = 0.704

The highest gain value for the subset of the data where A = F , are attributes C and D. We can
choose either for the node. Choose attribute C.

Gain(SA=F ,C) = Gain(SA=F ,D) = 0.704

The decision tree grows a new node C as in Figure 30.

A

B C

? ? ? ?

F T

F T F T

Figure 30: Partial decision tree for f5.

The subset for A = F is now divided into two further subsets, using the values of attribute B to make
the division, as in Tables 9 to 10.
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A B C D f5
F F F F no
F F F T no
F F T F no
F F T T no

Table 9: Truth table for f5,A=F ,B=F

A B C D f5
F T F F no
F T F T yes
F T T F yes
F T T T yes

Table 10: Truth table for f5,A=F ,B=T

A

B C

no ? ? ?

F T

F T F T

Figure 31: Partial decision tree for f5.
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In Table 9 we see that f5 = no for all rows. This means we can add a leaf node to the decision tree
at this node, as in Figure 31.

Consider the data in Table 10.

Calculate the entropy of the data set in Table 10, where A = F , B = T and

SA=F ,B=T ≡ [1no, 3yes]

Entropy(SA=F ,B=T ) ≡
c∑

i=1

−pi log2(pi)

= −pno log2(pno)− pyes log2(pyes)
= −1/4 log2(1/4)− 3/4 log2(3/4)
= 0.811

The attribute C can take on two values: F or T .

Values(C) = F , T
SA=F ,B=T = [1no, 3yes]

SA=F ,B=T ,C=F ← [1no, 1yes]
SA=F ,B=T ,C=T ← [0no, 2yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute C, when A = F , B = T :

Entropy(SA=F ,B=T ,no) = −1/2 log2(1/2)− 1/2 log2(1/2)
= 1

Entropy (SA=F ,B=T ,yes) = −0/2 log2(0/2)− 2/2 log2(2/2)
= 0

Calculate the information gained when dividing the data by using the values of C, when A = F , B = T :

Gain(SA=F ,B=T ,C) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy (Sv )

= Entropy(SA=F ,B=T )− 1/4 Entropy (SA=F ,B=T ,no)− 3/4 Entropy (SA=F ,B=T ,yes)
= 0.811− 1/4× 1− 3/4× 0
= 0.561
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The attribute D can take on two values: F or T .

Values(D) = F , T
SA=F ,B=T = [1no, 3yes]

SA=F ,B=T ,D=F ← [1no, 1yes]
SA=F ,B=T ,D=T ← [0no, 2yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute D, when A = F , B = T :

Entropy(SA=F ,B=T ,no) = −1/2 log2(1/2)− 1/2 log2(1/2)
= 1

Entropy (SA=F ,B=T ,yes) = −0/2 log2(0/2)− 2/2 log2(2/2)
= 0

Calculate the information gained when dividing the data by using the values of D, when A = F , B = T :

Gain(SA=F ,B=T ,D) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy(Sv )

= Entropy (SA=F ,B=T )− 1/4 Entropy (SA=F ,B=T ,no)− 3/4 Entropy (SA=F ,B=T ,yes)
= 0.811− 1/4× 1− 3/4× 0
= 0.561

We see that:
Gain(SA=F ,B=T ,C) = Gain(SA=F ,B=T ,D) = 0.561

This means we can choose either C or D for the next decision tree node. Choose C to add to the
decision tree, as in Figure 32.

The subset for A = T is now divided into two further subsets, using C to make the division, as in
Tables 11 and 12.

A B C D f5
T F F F no
T F F T yes
T T F F no
T T F T yes

Table 11: Truth table for f5,A=T ,C=F

Calculate the entropy of the data set in Table 11, where A = T , C = F and

SA=T ,C=F ≡ [2no, 2yes]
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A

B C

no C ? ?

? ?

F T

F T F T

F T

Figure 32: Partial decision tree for f5.

A B C D f5
T F T F yes
T F T T yes
T T T F yes
T T T T yes

Table 12: Truth table for f5,A=T ,C=T

Entropy(SA=T ,C=F ) ≡
c∑

i=1

−pi log2(pi)

= −pno log2(pno)− pyes log2(pyes)
= −2/4 log2(2/4)− 2/4 log2(2/4)
= 1

The attribute B can take on two values: F or T .

Values(B) = F , T
SA=T ,C=F = [2no, 2yes]

SA=T ,C=F ,B=F ← [1no, 1yes]
SA=T ,C=F ,B=T ← [1no, 1yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute B, when A = T , C = F :

Entropy(SA=T ,C=F ,no) = −1/2 log2(1/2)− 1/2 log2(1/2)
= 1

Entropy (SA=T ,C=F ,yes) = −1/2 log2(1/2)− 1/2 log2(1/2)
= 1
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Calculate the information gained when dividing the data by using the values of C, when A = T , C = F :

Gain(SA=T ,C=F ,B) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy(Sv )

= Entropy (SA=T ,C=F )− 2/4 Entropy (SA=T ,C=F ,no)− 2/4 Entropy (SA=T ,C=F ,yes)
= 1− 2/4× 1− 2/4× 1
= 0
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The attribute D can take on two values: F or T .

Values(D) = F , T
SA=T ,C=F = [2no, 2yes]

SA=T ,C=F ,D=F ← [2no, 0yes]
SA=T ,C=F ,D=T ← [0no, 2yes]

Calculate the entropy values of the subsets of the data, when it is divided using the values of the
attribute B, when A = T , C = F :

Entropy(SA=T ,C=F ,no) = −2/2 log2(2/2)− 0/2 log2(0/2)
= 0

Entropy (SA=T ,C=F ,yes) = −0/2 log2(0/2)− 2/2 log2(2/2)
= 0

Calculate the information gained when dividing the data by using the values of C, when A = T , C = F :

Gain(SA=T ,C=F ,D) = Entropy (S)−
∑

v∈{F ,T}

|Sv |
|S|

Entropy(Sv )

= Entropy (SA=T ,C=F )− 2/4 Entropy(SA=T ,C=F ,no)− 2/4 Entropy(SA=T ,C=F ,yes)
= 1− 2/4× 0− 2/4× 0
= 1

A gain value of 1 means that D describes this subtree completely. The decision is now adjusted to
become as in Figure 33.

A

B C

no C D ?

? ? no yes

F T

F T F T

F T F T

Figure 33: Partial decision tree for f5.
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Looking at the data in Table 12 we see that f5 only has yes values, which means Entropy for this will
be zero, and no further subtrees will result. The decision tree then becomes as in Figure 34.

A

B C

no C D yes

? ? no yes

F T

F T F T

F T F T

Figure 34: Partial decision tree for f5.
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This leaves us with two subsets of the data, as in Tables 13 and 14.

A B C D f5
F T F F no
F T F T yes

Table 13: Truth table for f5,A=F ,B=T ,C=F

A B C D f5
F T T F yes
F T T T yes

Table 14: Truth table for f5,A=F ,B=T ,C=T

The ID3 algorithm will complete the calculations here (as you should in the examination to get
marks), but by inspection of Table 13 we can see that for the subtree A = F , B = T , C = F , the
attribute D describes the rest of the data perfectly, and becomes our subtree.

Similarly, in Table 14 f5 = yes for all rows, and becomes a leaf node in the decision tree.

This completes the decision tree, as in Figure 35. Compare this tree with the last binary decision
diagram in the previous question.

A

B C

no C D yes

D yes no yes

no yes

F T

F T F T

F T F T

F T

Figure 35: Complete decision tree for f5.
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Mark out of 100.
40 or less for clear indication that student does not understand the topic or evidence of plagiarism,
or answers are correct, but have not shown complete workings
50 correct and sufficient workings
60-70 correct and complete workings
80+ indicating thorough understanding of the work

Total marks out of 510.
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