


What Your Colleagues Are Saying . . .

Building Thinking Classrooms in Mathematics exudes enthusiasm for 
students, how they think, and how those thoughts coalesce into powerful 
thinking classrooms. It’s also deeply practical, describing how everything 
from the teacher’s questions to the arrangement of the furniture can add to 
your students’ learning.

Dan Meyer
Chief Academic Officer, Desmos

If your students are not the ones doing the thinking in your classroom, then 
this book is for you! Peter Liljedahl provides concrete advice on each of 14 
research-based practices, along with answers to frequently asked questions 
and suggestions for getting started, which will help you build a classroom 
where student thinking is the norm.

Peg Smith
Co-Author, 5 Practices for Orchestrating Productive Mathematics Discussions

Professor Emerita, University of Pittsburgh
Pittsburg, PA

Peter Liljedahl’s Thinking Classroom framework transformed my 
Mathematics classroom overnight. I was frustrated that despite my best 
teaching efforts some of my students still couldn’t solve simple problems 
by their final exam. This framework gave me a starting point that I started 
implementing the very next day (don’t wait for September to try this!) and 
next steps to continue incorporating as my practice evolved with 14 elements 
of the Thinking Classroom. Students began to talk to each other, think 
through complex problems, rely less on me and more on each other and best 
of all had better success in the courses I taught. The Thinking Classroom 
framework was exactly what my students and I needed!

Laura Wheeler
High School Math Teacher

Ottawa Carleton District School Board
Ontario, Canada

Peter refers to his research as “mucking about,” and that is the key thing 
for me, that he goes into actual classrooms, and does math with students. 
We learn the most from being in actual classrooms, talking to students, and 
figuring out how they think about mathematics tasks. We need our students 
to be better thinkers, and to see mathematics for what it is: a beautiful way of 
thinking. We need them to see that they, too, can have powerful insights into 
interesting mathematics problems.

Matthew Oldridge
Author of Teaching Mathematics Through Problem-Solving in  

K–12 Classrooms (Rowman & Littlefield, 2018)
Teacher, Peel District School Board

Ontario, Canada



An in-depth action plan backed with significant research and data, 
Liljedahl’s plan is one that can improve every classroom for the better, and 
he foresees and addresses any questions or concerns you may have regarding 
implementation. It is clear Liljedahl understands the students I teach in his 
list of student behaviors when posed with a now-you-try-one activity: the 
slackers, stallers, fakers, mimickers, and the few try-it-on-their-own-ers. 
This book outlines methods to increase the thinking and engagement of all 
my students. I was able to implement many of the methods the very next day.

Leslie Mohlman
Mathematics Teacher

Alpine School District
Lehi, UT

Peter Liljedahl’s work is accessible, inspired by research, and embedded in 
classroom practice. He digs deeply and concisely into what it means to teach, 
learn, and assess in a thinking mathematics classroom. Elementary teachers, 
especially, will recognize themselves in this resource. Peter makes visible 
the often-intuitive moves of elementary classroom teachers, describing 
what it is we are doing when it all just works, and how to meaningfully 
shift our practice when it doesn’t. From the way the furniture is arranged 
to how mathematical questions are posed, from who holds the pen to how 
to foster productive struggle and resilience, Peter sets the stage for genuine 
mathematical engagement in learners of all ages.

Carole Fullerton
Mathematics Teacher Leader and National Mathematics Consultant

Mind-Full Educational Consulting
Vancouver, BC

Research in education that turns right around and informs our practice is 
invaluable in today’s schools and classrooms. Peter uses evidence gathered 
in mathematics classrooms to directly inform how we make changes to our 
teaching and learning that enhances learning. This is the essence of evidence-
based practice, practice based on evidence from the very classrooms we seek 
to influence.

John Almarode
Associate Professor of Education

James Madison University
Harrisonburg, VA

After years of leading lessons in an “I do, we do, you do” format, I found that 
my students lacked a productive disposition toward mathematics and would 
give up on problems easily. I knew something had to change, but what was 
I going to change in my teaching practice and how was I going to get there? 
After 10 years of experimenting with different pedagogical approaches, 
classroom environment setups, and developing my own content knowledge, 
I realize that this book is the resource that could have helped me expedite 
the transformation I was after—moving from a classroom of “mimickers” to 
building a classroom of “thinkers.” Save yourself years of experimentation 



by investing a few hours reading this excellent book. Your students will 
thank you.

Kyle Pearce
K–12 Mathematics Consultant

MakeMathMoments.com & Greater Essex County District School Board
Ontario, Canada

Building Thinking Classrooms is an instructional tour de force for any math 
teacher. From his extensive research, Peter offers remarkably actionable 
classroom structures and teacher facilitation moves that get students to 
think and move forward in their thinking. I'm thrilled it's finally here!

Fawn Nguyen
Math TOSA, Rio School District

Oxnard, CA

For years I have heard about Thinking Classrooms in workshops, articles, 
and online. This engaging book has taken all the pieces that I have heard and 
seen and presents them in an easy to read, and more importantly, actionable 
package. Things that seemed a little too “I could never do that” for me now 
seem doable and I am inspired to begin to make changes. I am left with 
plenty to reflect upon in my current practice even as I begin to think about 
moving to a Thinking Classroom.

Casey McCormick
Math Teacher, Grades 5–8

Citrus Heights, CA

Building Thinking Classrooms prompts us to reflect on the potential of 
mathematics classrooms, teachers, and learners. Supported by numerous 
stories from classrooms, Peter methodically exposes the familiar structures 
of school mathematics that suppress the potential of learners, then carefully 
outlines a set of opportunities around which teachers of mathematics can 
organize a dynamic and responsive classroom.

Nat Banting
Recipient of the 2019 Margaret Sinclair Memorial Award and  
the National Museum of Mathematics’ 2019 Rosenthal Prize

Mathematics Teacher
Saskatchewan, Canada

Though there are many innovations in the area of teaching mathematics, 
few speak with a particular lens in terms of setting up an environment where 
thinking is made visible, where it’s public, where positive interdependence is 
connected to individual and/or group accountability, with students relying 
on their own agency, as well as the wisdom of their peers. One where the 
teacher is freed up to have eyes on all student work, and watch the thinking 
process in action. In other words, thinking becomes a clearly visible driver 
in this environment. All of this supports the release of responsibility to the 
students. It honors their voices, allows for the bumps in learning, and makes 



the thinking more public, thus supporting and encouraging risk-taking in a 
safe and supportive environment.

Yana Ioffe
School Principal

Corwin Consultant
Ontario, Canada

This book is timely and provides an accurate portrayal of what is occurring in 
mathematics classroom across the country. The book is a valuable reflexive 
tool that teachers can use as they analyze their own teaching practices.

Kenneth Davis
High School Mathematics Teacher and Department Chair

School District of Beloit
Beloit, WI

Peter’s work in building thinking classrooms has been the single most 
impactful (driver for) change in secondary mathematics education that I 
have witnessed. I have never seen another idea/approach/model capture 
so many teachers immediately, and make it past the point from learning 
to actual implementation in almost every classroom or instance that I 
have witnessed.

Mishaal Surti
Educational Consultant

Ontario, Canada

For teachers hoping to transform their teaching practice, Peter has written 
a definitive source. Peter’s conversational style makes this work both 
interesting to read and easy to follow. He describes a rich set of practices 
that will help mathematics teachers transform, in a positive way, everything 
about their classroom. Peter turns the daunting challenge into something 
manageable with advice that is both believable and practical.

David Wees
Senior Curriculum Designer

DreamBox Learning
British Columbia, Canada
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xvi BUILDING THINKING CLASSROOMS IN MATHEMATICS

FOREWORD

“Research says …”

In education, this phrase is often followed by claims about what 
works in teaching and learning. I regularly find myself responding 
with clarifying questions:

“What do you mean by research? How was the study designed?”

“How was success defined? Success for whom, under what conditions?”

“What do you mean by effective? How was effectiveness measured in 
this research study you’re citing?”

Sometimes, the answers are underwhelming. For example, I’m rarely 
convinced we should change teaching practices based on studies 
that used a single measure of success, such as annual standardized 
test scores, and that were conducted without researchers setting foot 
in the subject classrooms to see what was actually going on. Other 
times, I’m enthralled and informed by research, if that research 
involved thoughtful and serious study of teaching, learning, and 
student thinking.

Peter Liljedahl’s work is that second kind of research, the research I 
can’t get enough of. In my reading of Liljedahl’s work, research means 
exploring important, testable questions with more than four hundred 
teachers and their thousands of students over 15 years. Success means 
getting more of these students thinking in math class, for longer 
amounts of time. Effective describes teaching decisions and practices 
that create conditions for student thinking. And results are measured 
by watching what students do: How many seconds does it take 
students to get to work? How long do they persevere? How engaged 
are they? How often do they pull out their phones for distraction? 
Who is participating? How much do students talk? How much does 
mathematical knowledge move from one group to another?

Liljedahl is a studier of students. By valuing, observing, and 
interviewing them, he has gathered incredibly useful information 
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about one of the slipperiest questions in education: What works? For 
example, does it make a difference if teachers assign students a task 
by projecting it, printing it, writing down a textbook page number, or 
explaining it verbally? (Turns out, yes!) While teachers introduce this 
assignment, does it matter if students sit or stand? (It does.) How much 
of an impact does the timing of the launch within the lesson have? 
(A lot.) While students work on the task, should they use notebooks, 
chart paper, or erasable surfaces? In groups or individually? If they’re 
in a group, should everyone have a marker, or just one student? What’s 
the optimal group size? How should these groups be formed? How 
frequently should they change? These are just a few of the hundreds of 
questions Liljedahl and his colleagues considered and tested through 
tens of thousands of hours of classroom experimentation to figure out 
what works and what matters. When they discovered a technique that 
yielded a significant benefit during a two-week trial—as measured by 
increased student engagement and thinking—they collaborated with 
teachers to refine the technique over several weeks, and then tested 
the results with many additional teachers in a wide range of settings 
over longer stretches of time. Only lasting techniques that produced 
the most student thinking and were transferable across teachers and 
schools have made it into this book.

The practical, readable resource you’re holding in your hands is an 
enormous gift and guide to math teachers. Liljedahl has identified 
the most effective changes we can make to get our students thinking 
and keep them thinking longer. He has organized these shifts into an 
intuitive framework so we can start as soon as we are ready and tackle 
one piece at a time. Liljedahl uses common sense, refreshingly honest 
student voices, and everyday language to describe ideas and behaviors: 
when he talks about “now-you-try-one” tasks or “I-write-you-write” 
notes, we know just what he means. Every moment is grounded in 
classroom reality and the path ahead feels so doable because of the 
way he has laid it out for us. I found myself nodding regularly as I read, 
and I am grateful that he has organized and described his findings 
with such clarity that we can implement these shifts incrementally, in 
the most effective sequence.

Incremental doesn’t mean gradual, however. Even though the specific 
shifts are practical and manageable, they will feel disruptive—that’s 
actually the main idea. Liljedahl argues convincingly that we need 
to interrupt the entrenched patterns of school. Students arrive at our 
classroom doorsteps each year, week, and day expecting the same 
familiar script: They take their seats and we stand at the front of the 
room. We show them what to do on the board and they copy it down 
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in their notes. They then mimic us through worked examples, again 
on homework problems, and finally on a test scored by percentage. 
Over the course of Building Thinking Classrooms in Mathematics, we 
learn from Liljedahl’s contrarian logic to question and replace each 
of these familiar patterns with different, more effective, field-tested 
techniques. Instead of sitting during a discussion, students stand. 
Instead of taking mindless notes to please us, they take notes that 
would be helpful to their future forgetful selves. Instead of mimicking 
our methods alone, they think about new problems together, and 
so on. We make these changes not for the sake of change, nor for 
ideological reasons, but because these practices lead to increased 
student thinking in hundreds of diverse classrooms. Taken together, 
these practices signal to students that this class is different: In this 
class, they’ll be expected to think.

Why does it matter? Because most of our students do an awful lot 
of “studenting,” but not much thinking. Students from communities 
that have historically been excluded from mathematics are often 
denied access to thinking at all. For the health of our students and our 
societies, we need to challenge institutional norms and build thinking 
classrooms in which we value students’ thinking and time rather than 
use legacy practices that encourage students to slack, stall, mimic, 
and fake their way through the system. In Chapter 9, Liljedahl wrote 
that the “goal of building thinking classrooms is not to find engaging 
tasks for students to think about. The goal of thinking classrooms is 
to build engaged students that are willing to think about any task.”

Given the enormity of the problems we all face, I am especially 
eager for teachers to implement the ideas and techniques in Building 
Thinking Classrooms. Could there be anything more important and 
pressing than teaching students how to think?

—Tracy Johnston Zager
Author of Becoming the Math Teacher  

You Wish You’d Had: Ideas and Strategies from Vibrant Classrooms
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INTRODUCTION
................................
When I first met Jane in 2003, she had been teaching middle school 
for 15 years. Although she was comfortable teaching math, there was a 
new curriculum on the horizon—and word on the street was that this 
new curriculum was going to have a heavier focus not only on problem 
solving, but also teaching through problem solving. In her 15 years of 
teaching, Jane had never done either of these. So, she decided she should 
get out in front of the new curriculum, learn something about problem 
solving, and start playing with it in her classroom.

Jane knew three things about me. First, she knew that I liked problem 
solving. My research at the time was, in essence, on creativity in problem 
solving, and I had been doing some workshops for teachers in her school 
district on this topic. Second, Jane knew that I was working on my PhD, 
was out of the classroom, and therefore had nothing but spare time on 
my hands. And third, she knew my e-mail address. I don’t know how 
Jane knew any of these things, as I had never met, or even heard of, Jane. 
Nonetheless, one day in 2003 I received an e-mail from Jane:

Jane Hi. I’m interested in implementing problem solving in 
my Grade 7/8 mathematics classroom. Can I get some 
help from you?

Fantastic! I had been out of the classroom for a few years and I was 
missing teaching. To me this was an opportunity to not only get back 
into the classroom, but also do some problem solving with students.

Peter I’d love to help. Why don’t we have a meeting to discuss 
it? I can come to school tomorrow. What room are you 
in and what time does school end?
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So, the next day I showed up at Jane’s door at 3:15 with a big smile on 
my face. This was going to be awesome.

Jane, who had clearly worked with researchers before, was not 
as enthusiastic.

Jane Look. Before we start talking about problem solving, 
I want to get a few things straight. First, I don’t want 
any of your glee and enthusiasm in here. I don’t want 
to coteach with you. I don’t even want to coplan with 
you. All I really wanted were some good problems that 
I could use in my Grade 7/8 math classroom. I don’t 
even know why we are having this meeting.

This was not what I had been expecting. In fact, it was about as far from 
what I had been expecting as possible. But I would not be deterred, 
and after 15 minutes of discussion we arrived at a tense agreement—
of sorts. I would give Jane good problems to try, and she, in return, 
would allow me to watch her implement them. But she had rules.

Jane First, you have to stay in that desk [pointing at a desk 
in the back corner of the room]. You are not allowed to 
talk to the students. And you are definitely not allowed 
to talk to me.

And so it was that we began our collaboration—of sorts.

The first problem I gave Jane came from Lewis Carroll and was a 
problem I had used many times with my Grade 8s and 9s. I knew 
that this was a good problem. The context was engaging, the answer 
was non-trivial, and it didn’t require any sophisticated mathematics 
to solve. And my students, when I had used it with them, had enjoyed 
arguing over the various answers they arrived at.

If 6 cats can kill 6 rats in 6 minutes, how many will be needed 
to kill 100 rats in 50 minutes? (Lewis Carroll, 1880)

So, the next morning I sat in Jane’s class and watched her write this 
problem up on the board for her students to solve. Before I tell you 
what happened next, let me review a few details. As mentioned, Jane 
had been teaching for 15 years and until this day had never used 
problem solving in her classroom. Her students sat in desks that were 
in rows with some of the rows put together to make student pairs 
(see Figure i.1). The students did not have assigned seats and sat and 
worked with who they wanted. A typical lesson, Jane had told me, 
began with her going over homework. This was followed by a lecture, 
during which time Jane demonstrated how to answer questions and 
the students took notes. Toward the end of the lesson Jane would ask 
students to do what I call now-you-try-one questions, which, after a 
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few minutes, she would then go over. After a few of these she would 
assign homework out of the textbook, a student workbook, or a 
handout, and the students would work on this for the rest of the class. 
In short—it was a typical math class and a typical math lesson. Oh, 
and it was May—six weeks before the end of the school year.

With that information in hand, how do you think her first attempt at 
using a problem-solving task like this with her students went? Yup—it 
was a disaster. As soon as Jane asked the students to solve the question 
on the board, a forest of hands went up and Jane started moving. She 
was going from student to student, from pair to pair, helping students 
who had questions about what they were supposed to do, if they 
were doing it right, and if this was the correct answer. Rather quickly, 
students became discouraged and began giving up, and now Jane was 
spending as much time encouraging students to keep going as she was 
helping the students who were still working.

Meanwhile, I was sitting in the back of the room, in my designated 
desk—not talking to the students and definitely not talking to Jane. 
The whole time I was watching this train wreck I was thinking that 
this was it—Jane was going to throw me out of her class, and that 
would be it for our brief, but spectacularly miserable, collaboration.

After about 25 minutes, Jane shifted gears and got the students onto a 
different activity, and she came up to me and said, “Give me another 
one.” I was both shocked and impressed. There was more to Jane 

Figure i.1 Students in a traditional classroom work on a task.
Source: skynesher/iStock.com
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than met the eye. So, I gave Jane a second task, and the next morning 
I  was back in my desk watching Jane try it again—same students, 
new problem.

It went worse. The students were quicker to give up, and Jane now 
spent more time encouraging and less time helping. At the end of the 
activity Jane came up to me and said, “Give me another one.” This 
woman had grit. Over the last 18 years I have worked with hundreds 
of teachers, and not since Jane have I encountered a teacher with such 
fortitude—such will and determination to keep going in the face of 
utter failure. So, I gave Jane a third task, and the next morning I was 
again back in my desk—same students, new problem.

It was the worst of all. The students had absolutely no fight left in 
them, and for 25 minutes they just sat there, off task, and talking 
amongst themselves. Jane still had fight in her, however. And for the 
entirety of the 25 minutes she kept moving around the room trying to 
get something happening. When she came up to me at the end of the 
activity, she said, “I think we’re done.”

I agreed. Everybody in the room was in pain. The students were 
frustrated. Jane was exhausted. And I was disappointed. It was time to 
stop. But I wanted to understand why the tasks that I had used with 
success previously were failing so badly. So, I asked Jane if I could stay 
for the rest of day and watch her teach. She agreed and added, “You 
know the rules.”

As it turns out, I sat in Jane’s room for three full days watching her 
teach using her aforementioned routine of going over homework, 
demonstration, notes, now-you-try-one tasks, and assigning 
homework. Sometimes she was teaching the same students with 
whom she had tried the problem-solving tasks. Sometimes she taught 
other students. Toward the end of the third day, I was struck by two 
epiphanies. The first was the realization that at no point in the three 
days of observation had I seen Jane’s students do any thinking—at 
least not the kind of thinking that we know students need to do to 
continue to be successful in mathematics in future grades. This is 
not to say that there was no activity. There was lots of activity—the 
students were busy from the beginning of class to the end. They were 
taking notes, answering questions, filling in worksheets, and starting 
on their homework. They were busy. They just weren’t thinking.

The second epiphany was the sudden realization that Jane was 
planning her teaching on the assumption that students either couldn’t 
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or wouldn’t think. Jane was in a tough position—she had a room 
full of students who weren’t thinking, yet she had curriculum to 
get through and standards to meet. This is not uncommon. Every 
day, teachers all over the world find themselves in this exact same 
dilemma. Even teachers who, by traditional measures, are considered 
good teachers—who know their content, care about their students, 
and want to do the best for them—face this dilemma. Jane was 
considered, in her school and throughout her district, to be a very 
good teacher—her students performed well on tests, and no students 
appeared to be falling through the cracks. Jane wanted to do her best 
for her students, and she was willing to work hard to get there. And 
yet Jane found herself in this exact dilemma. So, what did she do? 
She did what many of us do—she structured activities that allowed 
her to move through the content as quickly and efficiently as possible 
without requiring her students to think. I’ll give you an example.

There was an activity I watched Jane do that can be loosely described 
as a toothpick problem. The goal of the activity was to have students 
construct a row of squares out of toothpicks and record how many 
toothpicks it took to construct rows of different lengths. From these 
data, students were to then extrapolate and figure out how many it 
would take to build a row of length 10, 20, and 100 and then express the 
generalization in some prealgebraic format. These are great thinking 
activities when students are left to explore. In Jane’s class, however, 
this activity was a set of instructions on a worksheet that she got 
from one of her resources. This wonderful patterning, extrapolation, 
and generalization activity had been reduced to a form of cookbook 
mathematics that ensured that, within 20 minutes or so, 
every student had completed it while, at the same time, 
ensuring that no one would do any thinking. Of course, 
these activities enabled the students to not have to think, 
which, in turn, forced Jane to keep planning her teaching 
on the assumption that students either couldn’t or wouldn’t 
think. But what choices did she have? Jane was stuck in a 
sort of endless and vicious non-thinking cycle. This is a 
problem. Thinking is a necessary precursor to learning, 
and if students are not thinking, they are not learning.

I wondered if this was a uniquely Jane problem, so I visited another 
teacher in her school. I saw the same thing. I visited another—same 
thing. In all, I visited five teachers in that building, and everywhere 
I went I saw the same thing—students not thinking and teachers 
planning their teaching on the assumption that students either 
couldn’t or wouldn’t think. This is now a school problem.

Thinking is 
a necessary 
precursor to 

learning, and if 
students are not 
thinking, they are 

not learning.



6 BUILDING THINKING CLASSROOMS IN MATHEMATICS

I now wanted to see if this was a uniquely school problem, so I reached 
out to educators I knew and asked them to recommend to me teachers 
that they had heard were good. I contacted these teachers and asked if 
I could come in and watch them teach and watch their students learn. 
Many of them said yes. So, I left Jane’s school and I visited different 
classrooms in different schools. When I was in those classrooms 
observing, I would ask those teachers if they knew of a teacher, in a 
different building, that they had heard was good. And so it was that 
I hopped from classroom to classroom, from school to school, visiting 
these good teachers.

Because I was following this thread of good teachers there was a lot of 
diversity among the schools I visited. I visited classrooms of every grade 
from kindergarten to Grade 12. I was in low socioeconomic settings 
and high socioeconomic settings. I was in French-speaking classrooms 
and English-speaking classrooms. I was in public schools and private 
schools. In all, I was in 40 different classrooms in 40 different schools. 
And everywhere I went I saw the same thing—students not thinking 
and teachers planning their teaching on the assumption that students 
either couldn’t or wouldn’t think. And, like Jane, these were all 

considered good teachers—they knew their content, 
they cared about their students, and they cared that 
their students got through the content. And, like 
Jane, these 40 teachers were all caught in the same 
sort of endless and vicious non-thinking cycle—
they had students who weren’t thinking, and they 
had content to get through. And, like Jane, they were 
using resources and textbooks that were designed to 
facilitate this. This is not a Jane problem. Or a Jane’s 
school problem. This is a systemic problem (see 
Figure i.2).

Everywhere I went I 
saw the same thing—
students not thinking 

and teachers planning 
their teaching on 

the assumption that 
students either couldn’t 

or wouldn’t think.

Figure i.2 Students not thinking.
Sources: Goldfaery/iStock.com and Courtney Hale/iStock.com
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Students Not Thinking
At this point you may be satisfied with my statement that students 
were not thinking, and you may be nodding with the realization that 
that is also happening in your classroom, and you may be keen to get 
on with the rest of the book about how to change that—how to build 
a thinking classroom. If that is the case, then you can skip to the next 
section on institutional norms. If, however, you want a bit more of a 
description of what I mean by not thinking and how much of this was 
really happening in these 40 classrooms, then read on.

When I was visiting these 40 classrooms and coming to the realization 
that everywhere I went I saw students not thinking, what I really had 
was a sense that students were not thinking. I didn’t have a good way 
to either qualify or quantify what I was seeing and not seeing. It was 
only a sense. It turned out to be true, but at the time it was only a sense.

My first effort to more precisely describe what I was seeing came 
later through a series of research projects into studenting behavior. 
Studenting, a term first coined by Fenstermacher (1986), is the 
analogue to teaching. As teachers, we do a great number of things that 
may or may not have to do with the facilitation of student learning. 
We take attendance, deal with classroom disruptions, make school 
announcements, collect permission forms, fund raise, and, oh yeah, 
we also help students learn the curricular content and develop some 
skills. All of these activities fall under the umbrella term of teaching. 
For Fenstermacher, studenting is the analogue to this.

. . . there is much more to studenting than learning how to 
learn. In the school setting, studenting includes getting 
along with one’s teachers, coping with one’s peers, dealing 
with one’s parents about being a student, and handling the 
non-academic aspects of school life. (1986, p. 39)

[as well as] ‘psyching out’ teachers, figuring out how to get 
certain grades, ‘beating the system,’ dealing with boredom 
so that it is not obvious to teachers, negotiating the best 
deals on reading and writing assignments, threading the 
right line between curricular and extra-curricular activities, 
and determining what is likely to be on the test and what is 
not. (1994, p. 1)

In essence, studenting is what students do in a learning setting—
some of which is learning. And much of which is not. For me, 
studenting was the perfect way to start thinking about what it is that 
students are doing if they are not thinking. So, I decided to begin 

Studenting: is what 
students do in a 
learning setting—
some of which is 
learning.



8 BUILDING THINKING CLASSROOMS IN MATHEMATICS

to research studenting within a number of what 
are called activity settings within the mathematics 
classroom. An activity setting is a discrete and 
well-defined activity within a lesson. The activity 
settings I first researched were now-you-try-one 
tasks, note-taking, and homework. I will present 
the results from note-taking and homework in 

Chapters 7 and 11, respectively. Here, I will present the results from 
the studenting research into now-you-try-one tasks.

A now-you-try-one task is a task that teachers ask students to do after 
the teacher has demonstrated to students how to do something. So, for 
example, we may be demonstrating to students how to multiply two-
digit numbers, and after we have thoroughly explained this and done 
two or three examples, we may turn to our students and say, “Now you 
try one,” as we write up the one we want them to try. And then we wait 
for 4 minutes and 22 seconds, which is the average amount of time 
teachers give students to do a now-you-try-one task, before we go over 
how to solve it. Then, in many cases, we give the students another now-
you-try-one task. In my visits to the aforementioned 40 classrooms, 
now-you-try-one tasks were a foundational and central part of every 
lesson I observed and, for many of these teachers, were part of the 
fabric of what it means to teach.

When I asked these teachers to tell me what student behavior they 
expect to see during these moments, the answer was always the same.

Lillian  I expect to see my students try it on their own.

Researcher For what purpose?

Lillian   To see if they can do it, and to learn from their 
mistakes if they can’t.

We expect students to try it—and learn from it. Now-you-try-one 
tasks are a type of self-assessment where students and teachers 
learn whether the demonstrations were a success. This is pretty 
straightforward. So, what do students really do? What are their 
studenting behaviors during this discrete and well-defined learning 
setting? Well, it turns out that some students behave exactly as we 
expect—but only about 20% of them. The rest do not. In a study into 
studenting behaviors across several different classrooms, we found 
an array of behaviors1 during the now-you-try-one activity setting 
(Liljedahl & Allan, 2013b). See if you recognize some of these.

1 For a deep analysis of the psychology behind these, and other, studenting behaviors, 
see Allan (2017).
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1. Slacking - A number of students in each class did not 
attempt the task at all. Instead, they spent the time looking 
at their smart phones, talking to other slackers, or literally 
doing nothing. When they were interviewed, it became clear 
that the students who slacked either didn’t know what was 
going on or didn’t care what was going on.

2. Stalling - Like the students who slacked, these students 
did not attempt the task. Unlike the slackers, however, these 
students filled the time with legitimate off-task behaviors 
like sharpening a pencil, getting a drink of water, going to 
the bathroom, or endlessly rooting in their backpack for 
some vital piece of equipment. When interviewed, these 
students told us that they either didn’t know how to do the 
question or knew that if they just waited for a few minutes 
the teacher would go over it.

3. Faking - Some students pretended to do the task but 
were, in reality, doing nothing. Faking involved studiously 
looking at the board, f lipping pages in the textbook, 
appearing to ponder, and pretending to write something on 
their page. But, for all the bluster and show, nothing was 
being achieved. Like the stallers, these students were hiding 
behind legitimate student behavior. The difference was that 
while the stallers hide behind legitimate off-task behavior, 
the fakers hide behind legitimate on-task behavior. When 
we interviewed them, we learned that, like the stallers, 
these students either didn’t know how to do the task or 
were just killing time until the teacher went over it.

4. Mimicking - Unlike students in the three aforementioned 
groups, students who mimicked attempted, and often 
completed, the task. What they were doing, however, was 
trying to recreate the pattern of the solutions that had just 
been demonstrated on the board. This involved constant 
referencing to the demonstrated example with line-by-line 
mapping from the example to the task at hand. If the example 
that the teacher had demonstrated did not match the task they 
were asked to do, these students were often way off track or 
completely stuck. When we interviewed the teachers in whose 
classrooms we were doing the studenting research, all of them 
stated, with emphasis, that they did not want their students to 
mimic. Ironically, 100% of the students who mimicked stated 
that they thought that mimicking was what their teacher 
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wanted them to do. They were reading the demonstration of 
an analogous example prior to the now-you-try-one tasks as 
an invitation to mimic.

5. Trying it on their own - The last behavior was to just try 
it on their own. These students put their heads down and 
just tried to reason their way through the task based on their 
understanding. Some of them got it right, some of them got it 
wrong. Regardless, they were checking their understanding 
and getting feedback on it—as the teachers had intended.

These same five studenting behaviors were present every time we 
observed students in a now-you-try-one setting. And the distribution 
of how many students were exhibiting each behavior was surprisingly 
similar in each of the 10 classrooms in which we conducted this 
research (see Figure i.3). In all instances mimicking was exhibited 
by more than half of the class, with slacking, stalling, and faking 
combining to account for about a quarter of the students. Those trying 
it on their own—which is what the teacher wanted—only accounted 
for about 20% of the students. So, when I said that that I had a sense 
that students were not thinking, what I was actually seeing was 
slacking, stalling, faking, and mimicking—none of which is thinking.

Figure i.3 Distribution of studenting behaviors on now-you-try-one tasks.
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When I combined the studenting data for now-you-try-one tasks 
with the studenting data for note-taking (Chapter 11) and homework 
(Chapter 7), along with data from other activity settings, a clear 
picture emerged for exactly how much non-thinking behavior was 
present within a one-hour lesson. The results were troubling. In a 
typical one-hour lesson, 75%–85% of the students exhibited non-
thinking behaviors for 100% of the time. The rest of the students 
exhibited non-thinking behaviors for all but 8–12 minutes of the 
time. This became my baseline data—the baseline from which I was 
hoping to make improvements.

Institutional Norms
On my journey through these original 40 classrooms in 40 different 
buildings, other patterns began to emerge. Everywhere I went, 
irrespective of grade or demographic, classrooms looked more alike 
than they looked different. And what happened in those classrooms 
looked more alike than it looked different. There were differences, 
to be sure, but the majority of what I was seeing was the same. There 
were desks or tables, usually oriented toward a discernible front of the 
classroom. Toward this front was a teacher desk, some sort of vertical 
writing space for the teacher, and some sort of a vertical projection 
space. Students sat, while the teacher stood. Students wrote on 
horizontal surfaces while the teacher wrote on vertical ones. And the 
lessons mostly followed the same rhythm—beginning with some sort 
of teacher-led activity like a lecture or note-taking, perhaps shifting 
to some sort of small or big group discussion, but almost always 
culminating in some form of individual work. Even in the few more 
progressive classrooms I observed, the physical space looked the 
same, and the rhythm of the lesson was the same. What was different 
was the duration and nature of the activity in the 
middle of the lesson.

These normative structures that permeate class-
rooms in North America, and around the world, are 
so robust, so entrenched, that they transcend the idea 
of classroom norms (Cobb, Wood, & Yackel, 1991; 
Yackel & Cobb, 1996) and can only be described as 
institutional norms (Liu & Liljedahl, 2012)—norms 
that have extended beyond the classroom, even the 
school building, and have become ensconced in the 
very institution of school. Much of how classrooms 
look and much of what happens in them today is 

Much of how 
classrooms look and 

much of what happens 
in them today is 

guided by institutional 
norms—norms that 

have not changed since 
the inception of an 

industrial-age model of 
public education.



12 BUILDING THINKING CLASSROOMS IN MATHEMATICS

guided by these institutional norms—norms that have not changed 
since the inception of an industrial-age model of public education. 
Yes, desks look different now, and we have gone from blackboards 
to greenboards to whiteboards to smartboards, but students are still 
sitting, and teachers are still standing. And although there have been 
a lot of innovations in assessment, technology, and pedagogy, much 
of the foundational structure of school remains the same.

Toward a Thinking Classroom
Everywhere I went I saw students not thinking and, as a result, 
teachers having to plan their teaching on the assumption that students 
either can’t or won’t think. And everywhere I went, I saw classrooms, 
and what happened in classrooms, that looked more alike than they 
looked different. So, I began to wonder if there were a connection 
between these in some way? Could the very institutional norms that 
permeate all schools and all classrooms actually be enabling and 
fostering the non-thinking behaviors I was observing? If this were 
true, what that would mean is that we would need to fundamentally 
alter the institutional norms to get students to think.

This assumption became the basis of my research, and for the next 15 
years I worked with over 400 K–12 teachers to try to break through 
the non-thinking behaviors and get students to think. We worked 
in teams of 8–18 teachers in two-week cycles to deliberately break 
institutional normative structures and see whether it could increase 
student thinking. Our goal was simple—try to increase the number of 
students thinking and try to increase the number of minutes during 
which students were thinking. In essence, we wanted to improve on 
the baseline data. And we were willing to break any and all classroom 
norms to achieve it. Our only restrictions were that we would work 
within the confines of the classroom and within the confines of the 
set bell schedule. Other than that, there was no norm we were not 
willing to turn over.

To illustrate an extreme example of how far we were willing to go, early on 
in the research I worked with eight teachers who taught for two weeks in 
classrooms without any furniture. Furniture is an enduring institutional 
norm, and we wanted to see what would happen if we upended it. I learned 
three things from this experiment. First, student thinking increased—
and radically so. We had more students thinking and thinking for longer. 
Despite this positive result, however, I also learned that teachers don’t like 
to teach in classrooms without furniture. This realization was important 
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and formed a structure for much of my research going forward. There 
is no point in researching a practice that teachers are unwilling to 
implement—irrespective of how positive the results are. This constrained 
the scope of what we were willing to try in the classrooms. This is not to 
say that we were not willing to push into spaces that were uncomfortable, 
but there were limits to what was reasonable.

The third thing I learned was that results often came before 
explanations. This remained true all through the research and continues 
to be true even today. Knowledge of what works always preceded an 
understanding of why it worked. As a researcher who is used to starting 
with theories and then testing them, this was new and exciting territory 
for me. In the case of no furniture, for example, it took many months 
of interviews with students in different contexts before I began to even 
get a glimpse of why having no furniture influenced student thinking. It 
turns out that when students walk into a classroom that looks like every 
other classroom they walk into, they assume that the lesson is going to 
go like every other lesson they have been part of. And, therefore, they 
bring all of their habits and studenting norms into the room with them. 
If those studenting norms are non-thinking behaviors, then they are 
going to not think in this lesson as well. When the students walk into 
a room that looks very different, however, then they leave their habits 
and norms at the door and allow themselves to be different—at least to 
begin with. The reason teaching in classrooms with no furniture had 
an effect on student thinking wasn’t that it, in itself, promoted thinking 
but rather that it didn’t trigger non-thinking habits. And this gave the 
teachers a chance to make something else happen. I will return to this 
idea in Chapter 15.

So, we launched into the research with enthusiasm, and almost 
immediately we started to see positive changes in student thinking. 
Teachers were reporting back great successes, and, when I would visit 
classrooms and gather data, I was seeing tremendous improvements 
in student thinking. In our enthusiasm to create change, however, we 
lost sight of what changes were having what impact. We were trying 
so many things at once that we lost control of cause and effect—
pedagogy and thinking. We needed to be more systematic in our 
experimentation. We needed to pick one variable to experiment with 
for two weeks and measure the effects on student thinking through 
that one variable. But what were the variables?

The obvious choice was the list of activity settings I had studied during 
the studenting research—now-you-try-one tasks, notes, homework, 
review, group work, et cetera. But the list of what influences thinking 
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in a classroom goes well beyond the discrete moments in a lesson. For 
example, I have already demonstrated that how a room looks when 
students walk in has an impact. So too do how we ask and answer 
questions, the types of tasks we use, and so on.

In an effort to find a list of variables that impact thinking in a 
classroom, I spent several months visiting classrooms that I was 
not, at the time, running experiments in. I was looking for a way to 
disaggregate teaching into discrete factors, each of which could act as 
a variable in our pursuit to improve thinking in the classroom. In the 
end, a list of 14 such factors emerged.
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This list is comprehensive. Everything we, as teachers, do in the 
classroom is an enactment of one of these factors, and how we enact 
each of these factors is what forms our teaching practice—our unique 
teaching practice.

These factors became the variables we systematically experimented 
with in our efforts to increase thinking in the classroom. What 
we were looking for were practices, for each factor, that generated 
more thinking than the institutionally normative practices I had 
observed. And of these practices, we were looking for the practices 
that generated the most thinking—what we eventually came to call 
the optimal practice for thinking. And we found them. Slowly at first. 
But over the next 15 years they all emerged.

As it turned out, finding practices that generated more thinking than 
the institutional normative practices was not difficult. The normative 
practices were far from optimal, and there are many ways to enact 
each of the 14 factors such that they generate more thinking. In most 
cases we began our research by enacting a practice that was the exact 
opposite to what the norm was—if the norm was that students sit, 
then we made them stand; if the norm was that we answer students’ 
questions, then we stopped answering questions; and so on. In some 
cases, this contrarian approach produced the optimal practice, but in 
all cases, it produced a practice that generated more thinking than the 
baseline data.

Groups of teachers tried each practice for two weeks. If it produced 
good results, then we tweaked it, and the teachers kept going with 
it. If, along the way, we tried a practice that was less effective than 
another practice we had tried, we abandoned it and tried something 
else. And so on. Eventually, after a number of iterations, we would get 
to the point where any changes we made to the practice made it less 
effective. At that point we had what I called a local optimal practice—it 
was optimal for that particular teacher, in their particular setting, with 
their particular demographic of students. Although these practices 
were of interest for teaching in general, they were often intertwined 
with aspects of the teacher’s personality, habits, and norms. What I 
really wanted were practices that worked for any teacher in any setting.

So, I would take these local optimal practices and give them to 
different teachers in completely different settings, teaching different 
demographics of students, and see how these practices worked for 
them. Then we would run two-week cycles of iterations among 
those teachers, until what emerged was a practice that produced 
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the most thinking and was transferable across teachers, settings, 
and demographics. I would then give that practice to a new group 
of teachers to use for six to eight weeks to see if it had longitudinal 
fortitude and was not just something that worked because it was new 
to students. If it passed this last hurdle, then this practice was now 
what I was willing to consider an optimal practice for thinking within 
the factor we had experimented with.

How To Read This Book
In the chapters that follow, you’ll read about each of the 14 optimal 
practices for thinking that emerged from the research into each of 
the 14 aforementioned variables. Each chapter begins with a brief 
description of which factor the chapter is addressing, why it is 
important, and what you will learn in that chapter. This is followed 
by an exploration around The Issue concerning the institutionally 
normative practices for this factor and what is The Problem that 
comes with these normative practices.

These introductory sections are then followed by the main part of 
the chapter, called Toward a Thinking Classroom, where you’ll learn 
about the optimal thinking practice for the factor in question and how 
this practice generally addresses some of the problems raised in the 
introductory sections, along with some grade-band or demographic-
specific guidance where there is nuance. This is also the section in 
which you’ll encounter a lot of concrete advice for implementing 
these practices. In our research into the optimal practices for thinking 
for each factor, what emerged were a number of what I came to call 
micro-moves. These are the little things within each of the practices 
that we found enhanced, streamlined, or made easier to implement 
the optimal practice. These are called micro-moves to contrast them 
against the macro-moves that are the optimal practices for thinking in 
each chapter. This is not to say they are any less important. In many 
cases, these micro-moves make the difference between smooth and 
rough implementation in your classroom.

Some of the things you read in The Issues and The Problem sections 
of each chapter will likely disturb you, as you may read about problems 
with practices that you are using. You may feel challenged by those 
ideas, and you may have questions about them. At the same time, 
some of the results you read in the Toward a Thinking Classroom 
sections may be difficult to imagine, and you may have questions 
about them or how to implement them in your classroom. As such, 
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the next section in each chapter is called FAQ—frequently asked 
questions. This section addresses the questions that I find educators 
are most often curious about. I hope that the questions I address are 
the same questions that arise for you as you read the chapter.

Each chapter ends with a quick summary of the Macro- and Micro-
Moves and a series of Questions to Think About. These questions 
can be used as discussion points if you are reading this book as part 
of a professional learning community (PLC), if you are in a methods 
course, or in partnership with another teacher. If you are reading the 
book by yourself, these questions can also be used to push you to think 
more deeply about what you have read in the chapter and how what 
you read will translate into your classroom. Some of the questions are 
also designed to help you uncover some of the implicit beliefs that you 
have about teaching mathematics that could be the source of some of 
your challenges with or disbelief of what is presented in the chapter.

The book is written in such a way that you can read the whole book 
before you begin to build your own thinking classroom. If this is how 
you choose to engage with the book, then Chapter 15 will provide the 
results of the research into the optimal sequence for implementation 
and which practices need to be implemented together. If you want 
to build your thinking classroom as you read each chapter, then the 
book is also written to accommodate that. If this is how you choose 
to engage with the content, I suggest that you read Chapters 1–3 
and then implement all three of those optimal practices for thinking 
together. After that, you can implement each practice as you read 
about it. To help you along the way, each chapter ends with a Try This 
section where you are provided with some tips and tricks as well as 
thinking tasks that you can use to help initiate that thinking practice 
in your classroom.

This is not to say that you must implement each optimal practice 
exactly as stipulated in the chapter. These practices are a framework 
that is meant to come alongside your current teaching experience. All 
of your teacherly craft is still relevant and necessary to make each of 
these optimal practices work in your classroom. The micro-moves 
will help. And as you enact each practice within your particular 
setting and with your particular demographic, you will find new 
micro-moves that allow you to make each practice even better.

Enjoy the journey.



CHAPTER 1
WHAT TYPES OF TASKS WE USE  

IN A THINKING CLASSROOM
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If we want our students to think, we need to give them something to 
think about—something that will not only require thinking but will 
also encourage thinking. In mathematics, this comes in the form of 
a task, and having the right task is important. So, while 
the rest of the book will look at the things we can do in 
our teaching practice to build thinking classrooms, this 
chapter will look specifically at the tasks around which 
thinking classrooms are built. By the end of this chapter 
you will have learned about the different types of tasks 
that you can use to build a thinking classroom, where to 
find them, and how to design your own.

The Issue
Tasks are inert. To come alive, they need an audience to 
solve them. So, when I talk with teachers about what makes 
a good task for building thinking classrooms, I don’t talk 

about what a task is, but rather what a task does. And what a task needs 
to do is to get students to think. Consider, for example, the following task:

Which is greater, eight or nine?

You may be thinking that this is not a good task. And if this question 
were posed to Grade 9 students, you would be correct. That is the 
wrong audience for this task. But if this same question were asked 
of a four-year-old child, this turns out to be a very good task. The 
strategies that the child would need to invoke in order to figure this 
out are both complex and nuanced and would require a lot of thinking 
to resolve. So, the question is not whether which is greater is a good 
task or not. The question is, what is it good for? And the answer to 
that question is that it is good for getting students, for whom the 
relative cardinality and/or positionality of the number symbols have 
not yet been routinized, to think.

When it comes to talking about tasks that get students to think, the best 
place to start is with problem solving. From Pólya’s (1945) How to Solve 
It to the NCTM Principles and Standards (2000), the literature is replete 
with the benefits of having mathematics students engage 
in problem solving. Although there are arguments about 
the exact processes involved and the exact competencies 
required, there is universal agreement that problem solving is 
what we do when we don’t know what to do. That is, problem 
solving is not the precise application of a known procedure. 
It is not the implementation of a taught algorithm. And it 

If we want our 
students to think, 
we need to give 

them something to 
think about.

Problem solving 
is what we do 
when we don’t 

know what to do.
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is not the smooth execution of a formula. Problem solving is a messy, 
non-linear, and idiosyncratic process. Students will get stuck. They will 
think. And they will get unstuck. And when they do, they will learn—
they will learn about mathematics, they will learn about themselves, 
and they will learn how to think.

As with good tasks for building thinking classrooms, 
what makes a good problem-solving task is based on what 
it does—or rather, what it requires students to do to solve 
it. Good problem-solving tasks require students to get 
stuck and then to think, to experiment, to try and to fail, 
and to apply their knowledge in novel ways in order to get 
unstuck. The cats and rats problem in the introduction 
is a good example of such a task. Knowledge of fractions 
and ratios is necessary, but far from sufficient, to solve this 
problem. Yet, no other mathematical content knowledge 
is needed. To solve it—to get unstuck—we need to think 
about the problem differently than we usually think about 
equivalent fractions or common ratios. We need to come 
to the realization that if six cats kill six rats in six minutes, 
then either six cats will kill one rat in one minute, or 

one cat will kill one rat in six minutes. How a student gets to this 
realization is problem solving.

Problem-solving tasks are often called non-routine tasks because 
they require students to invoke their knowledge in ways that 

have not been routinized. Once routinization happens, 
students are mimicking rather than thinking—or as Lithner 
(2008) calls it, being imitative rather than creative. Good 
problem-solving tasks are also rich tasks in that they 
require students to draw on a rich diversity of mathematical 
knowledge and to put this knowledge together in different 
ways in order to solve the problem. They are also called rich 

because solving these problems leads to engagement with a 
rich and diverse cross section of mathematics. Regardless of 

how they are referred to, what makes a task a good problem-
solving task is not what it is, but what it does. And what they do is 

make students think.

My early research into building a thinking classroom was very much 
focused on tasks. Despite my experiences in Jane’s class, I still believed 
that the best way to get students to think was to give them a task 
that would motivate, even necessitate, them to think. For this reason, 
I spent a lot of time searching for and designing tasks that would do 

Good problem-
solving tasks 

require students 
to get stuck and 
then to think, to 
experiment, to 
try and to fail, 
and to apply 

their knowledge 
in novel ways 

in order to 
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just that. What emerged from these efforts was a collection of what 
I started out calling highly engaging thinking tasks. To this collection 
I also added a lot of mathematical card tricks and developed a genre of 
real-world problem-solving tasks that I called numeracy tasks.

Let’s take a closer look at each of these three kinds of tasks:

1. Highly Engaging Thinking Tasks are so engaging, so 
interesting, that people cannot resist thinking. They have 
broad appeal and can be used across a wide range of grades, 
with some being able to be used all the way from Grade 
4 up to calculus and beyond. At first, I thought they were 
rare—so rare, that for a long time I didn’t know if they really 
existed. And then I found one. And then another. And then 
several. Now I realize they are plentiful if you know where 
to look. Here are four examples of such tasks, organized by 
grade band:

• Primary: How many squares are in the image below?

• Intermediate: I buy a video game for $10. I then sell 
it for $20. I buy it back for $30. Finally, I sell it again for 
$40. How much money did I make or lose?

• Middle School: I have a four-minute egg timer and a 
seven-minute egg timer—the kind that you turn over and 
let the sand run through. Can I use these to cook a nine-
minute egg? If so, how long will someone have to wait for 
their egg?

• High School: An eccentric woman has booked three 
adjacent and adjoining hotel rooms. When she checks 
in, she tells the receptionist that if he needs her, she will 
always be in the room next door to the room she was 
in the night before. The receptionist thinks nothing of 
this until an hour later when he realizes that her credit 
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card has been declined, and he must now go find her. 
The problem is that he is very busy and only has time 
to knock on one door per day. How many days does he 
need to guarantee that he finds her? What if it were four 
rooms? Five rooms? What if it were 17 rooms, and she is 
checked in for 30 days—can he find her before she leaves?

 I will share more of these types of highly engaging thinking 
tasks throughout the book, beginning with some at the end 
of Chapter 3.

2. Card Tricks have the same qualities as highly engaging 
thinking tasks—they are highly engaging situated tasks that 
draw students in and entice them to think. It turns out that 
there are a lot of card tricks that are both built on and can 
be explained by mathematics. These were the ones I was 
interested in. What I was not interested in were card tricks 
that relied on sleight of hand. I wanted students to engage 
with the magic of mathematics, not the magic of my hands. 
Video 1.1 shows an example of one of these tasks. If you 
are interested in these kinds of card tricks, you can find a 
collection of them on my website (http://www.peterliljedahl.
com/teachers/card-tricks).

VIDEO 1.1

If you are interested 
in these kinds of 

card tricks you can 
find a collection 

of them on my 
website (http://www.

peterliljedahl.com/
teachers/card-tricks).

3. Numeracy Tasks are tasks that are based not only on 
reality, but on the reality that is relative to students’ lives. 
From cell phones to entertainment to sports, these tasks are 
built up specifically to engage students in rich tasks wherein 
they have to negotiate the ambiguity inherent in real-life 
experiences. For example,

Source: Youtube video via peterliljedahl.com

http://www.peterliljedahl.com/teachers/card-tricks
http://www.peterliljedahl.com/teachers/card-tricks
http://www.peterliljedahl.com/teachers/card-tricks
http://www.peterliljedahl.com/teachers/card-tricks
http://www.peterliljedahl.com/teachers/card-tricks
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SKI TR IP FUNDRAISER

The ski club is finally going skiing. Each person tried their best to raise 
money for their trip. Below is a chart that shows how much money each 
person raised, and their individual cost, depending on whether they need 
rentals or lessons. All of the money raised must be applied to the cost of 
the trip, and every person must go on the trip, even if it means that they 
may have to put in their own money to do it. Have they raised enough? If 
not, who needs to pay, and how much do they need to pay?

Name
Amount 
Raised

Rental 
Cost

Lift  
Ticket

Lesson 
Cost

Alex 75 20 40 40

Hilary 125 10 40 40

Danica 50 30 40 0

Kevin 10 40 40 40

Jane 25 0 40 0

Ramona 10 0 40 40

Terry 38 30 40 0

Steve 22 40 40 40

Sonia 200 20 40 0

Kate 60 25 40 0

All three of these types of tasks provide engaging contexts that draw 
students in and entice them to think. Therefore, these tasks are useful 
in building thinking classrooms. Aside from context, all these tasks 
also have easy entry points (low floor) and evolving complexity (high 
ceiling), and they drive students to want to talk and to collaborate.

Whereas the inherent ambiguity of numeracy tasks makes them 
truly open ended—with some having as many as 200 viable and 
defendable solutions—the highly engaging thinking tasks and card 
tricks usually have only one final answer. However, they allow for 
multiple approaches to get to that one answer and, hence, have an 
open-middle structure.

Low-Floor Task: 
Task with a 

threshold that 
allows any and all 
learners to find a 
point of entry, or 
access, and then 

engage within their 
level of comfort.

High-Ceiling 
Task: Tasks that 
have ambiguity 

and/or room for 
extensions such 

that students 
can engage with 

the evolving 
complexity of 

the task.

Open-Middle: A 
problem structure 
where a task has a 
single final correct 

answer, but in 
which there are 

multiple possible 
correct ways to 

approach and solve 
the problem.

More examples of these tasks, and how they are made, can be also be found on 
my website (http://www.peterliljedahl.com/teachers/numeracy-tasks).

http://www.peterliljedahl.com/teachers/numeracy-tasks
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The Problem
Aside from being rich and engaging tasks with the ability to get 
students to think, these aforementioned tasks share another 
quality—they are, for the most part, all non-curricular tasks. 

That is, very few of these tasks require mathematics that map nicely 
onto a list of outcomes or standards in a specific school curriculum. 
Consider, for example, the difference between two tasks that can be 
used with Grade 8 students: the True or False card trick in Video 1.1 
and a task that asks students to add two proper fractions with different 
denominators. The True or False task is clearly mathematical in nature; 
the solution to it requires that students attend to the position of the 
target card, the patterns in the cardinality of the number of letters in 
certain words, and the role that reversing order plays—none of which 
is an outcome in a Grade 8 curriculum. On the other hand, asking 
students to add two fractions with different denominators requires 
them to understand that a common denominator is needed, be able to 
find the lowest common denominator, add fractions, and potentially 
be able to reduce a fraction—all of which are outcomes in some Grade 
8 curricula. So, whereas both tasks are mathematical in nature, the 
True or False card trick is non-curricular, while the adding-fractions 
question is curricular.

Even if there is a rich task that maps nicely to the curriculum you 
are teaching, it only maps to curricular outcomes if students happen 
to solve the problem using concepts and skills from their current 
curriculum. This is the nature of open-middle and open-ended 
tasks. Such tasks invite students to think for themselves. And when 
students begin to think for themselves, a lot of unpredictable things 
can happen. If your goal is only to get students to think, then this 
is not a problem. If your goal is to use a rich task to, for example, 
get students to think about division of fractions, then this can be a 
problem. Of 30 students, only a handful may choose a solution path 
that follows the lines of curriculum you were hoping a rich task would 
touch on. The rest may choose to use repeated subtraction, repeated 
addition, or a type of logic that makes unnecessary the need to think 
about fractions at all. Depending on the grade you are teaching, these 
solution paths, although not achieving what you were hoping for, may 
still touch on topics from your curriculum. More often, however, this 
is not the case.

If, in reaction to this, we try to force a more predictable curriculum 
mapping by artificially constraining tasks, before long we have 

Non-curricular 
Task: A task 
that is clearly 
mathematical in 
nature but does 
not map well to 
the outcomes or 
standards specified 
in the curriculum 
for the class in 
which it is used.
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reduced what was once a rich task to the type of word problem we 
often see in mathematics textbooks:

Camille went to the store to buy eggs, milk, and cheese. 
Eggs cost $3.50, milk costs $2.00, and cheese costs $4.00. 
How much money did Camille need?

Word problems, like rich tasks, require the 
student to decode what is being asked. However, 
once a word problem is decoded, the mathematics 
is often trivial, procedural, and analogous to the 
mathematics that was taught that day. This is 
not true of rich problem-solving tasks. In a rich 
task, once the language has been decoded, the 
mathematics that is needed to solve it is neither 
trivial nor procedural. Basically, in rich tasks 
the problem is in the mathematics, and in word 
problems the problem is in the words—this is 
maybe why they are called word problems.

Whereas rich tasks get students to think at the expense of meeting 
curriculum goals, word problems more predictably and reliably push 
students to use specific bits of learned knowledge—but often at the 
expense of engagement and the thinking that we need to foster in our 
students. So, how then do we move forward from this reality?

Toward a  
Thinking Classroom
One way forward, although seemingly unrealistic, is to 

stop worrying about curriculum. My earliest efforts to build thinking 
classrooms did just this. Rather than think about curriculum, I was only 
concerned with getting students to think. This is not to say that I was 
naïve about the lived reality of classroom teachers and the persistent 
and ubiquitous nature of curriculum. Rather, it is just that I needed to 
start somewhere. Before I could even begin to think about how to get 
students to think about curriculum, I needed to get students to think.

This proved to be surprisingly easy. Once we shed the burden of 
curriculum, it turns out that there are a huge number of resources 
available to us that are effective for getting students to think. From 
problems of the day to brainteasers, the internet is full of resources 
that are engaging and thought provoking. Some of these, it can be 
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argued, address curriculum—but, again, only for those students who 
follow a particular solution path.

Students, as it turns out, want to think—and think deeply. My early 
efforts to build thinking classrooms through the use of highly engaging 
thinking tasks, card tricks, and numeracy tasks—and my cavalier 
attitude about curriculum—were actually hugely successful. Successful 

to the point where I could give a teacher a set of three tasks 
and, without any other changes, could dramatically increase 
both the number of students who were thinking and the 
number of minutes that were spent thinking. On top of that, 
students were enjoying and looking forward to mathematics 
and the next task, their self-confidence and self-efficacy 
increased, and they became better mathematical thinkers.

Students, as it 
turns out, want 
to think—and 
think deeply.

The trick was to maintain the positive effect, and positive affect, while 
turning our attention back to the reality of curriculum. To do this, I had 
one thread to follow—the thread that comes from the understanding 
that problem solving is what we do when we don’t know what to do. 
Curriculum tasks are typically the exact opposite of this. Curriculum 
tasks are often what students do when they know what to do—after 
they have been shown how. Asking a high school student to factor 
x2− 5x − 14 or an elementary student to solve 3.1 + 5.2 after they have 
been shown how promotes mimicking, not thinking. My observation 
of those initial 40 classrooms showed that this is exactly when and 
how curriculum tasks were most often used.

Figure 1.1 Students in an elementary classroom engage in a thinking task.
Source: FatCamera/iStock.com
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Having said that, it turns out that both of these 
questions are excellent thinking questions—if 
they are asked before the students have been 
shown how to answer them. Herein lay the 
root of how to get students to think while 
at the same time addressing grade-specific 
curriculum. For example, let’s look more 
closely at the factoring quadratic task and 
how that question can be presented without 
first teaching students how to do it.

Teacher Let’s start with a bit of review. How would I expand  
(x + 2)(x + 3)?

 [Teacher writes on the board (x + 2)(x + 3) =]

Students x2 + 5x + 6.

 [Teacher writes on the board (x + 2)(x + 3) = x2 + 5x + 6]

Teacher OK. So what if my answer were x2 + 7x + 6? What would 
the question be?

 [Teacher writes on the board (  )(  ) = x2 +7x +6 
right underneath the previous line.]

For adding decimals, the question could be posed in a similar fashion.

Teacher Let’s start with a brief review. Can someone tell the 
class what 3.1 means?

Student This is a number that is bigger than 3 but less than 4.

Teacher Is it closer to 3 or 4?

Student It is closer to 3.

Teacher OK. And what is 5.2?

Student It is a number between 5 and 6 that is closer to 5.

Teacher OK. If I add 3.1 and 5.2, what two whole numbers is the 
answer between, and which number is it closer to? 
What would the answer be?

Even counting at the primary level can be turned into a thinking task.

Teacher Let’s all count together up to 20.

Students 1, 2, 3, 4, 5, . . ., 20.

Teacher Ok. What if we start at 14? What are the three numbers 
that come after 14? What are the three numbers that 
come before 14?

Asking a high school 
student to factor x2− 5x − 14 
or an elementary student 

to solve 3.1 + 5.2 after 
they have been shown 

how promotes mimicking, 
not thinking.
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These scripts are similar in that they begin by asking a question about 
prior knowledge, then they ask a question that is an extension of that 
prior knowledge, and they ask students to do something without 
telling them how. And, as such, they require students to think, not 
only in general, but also about particular curriculum. It turns out that 
almost any curriculum tasks can be turned from a mimicking task to 
a thinking task by following this same formulation—begin by asking 
a question that is review of prior knowledge; then ask a question that 
is an extension of that prior knowledge.

In my research, I compared three types of lessons (Figure 1.2).

Figure 1.2 Three types of lessons.

There were big differences between how students performed in 
these types of lessons. Although the first two lesson types were 
both designed around tasks to get students to think, the lesson that 
was designed around non-curricular tasks (Type 1) got many more 
students to think than the lesson scripted to get students to think 
about curriculum (Type 2). Simply turning a standard curricular task 
into a thinking task was not enough to get all the students thinking.

Similarly, whereas the second and third types of lessons are both built 
around curriculum tasks, the lesson where direct instruction was 
used (Type 3) allowed more students to successfully complete the 
task at hand. This is not surprising, as mimicking can be an effective 
strategy that may allow students to be successful in the short term. 
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But, as mentioned in the introduction, mimicking is not thinking and 
therefore not learning. Naturally, there were also students who were 
successful on the rescripted curricular thinking task (Type 2). There 
were just fewer than in the direct instruction lesson.

However, an interesting thing happened when three lessons using 
non-curricular tasks (Type 1) preceded students’ exposure to the 
scripted curricular thinking task (Type 2)—the number of students 
who successfully completed the scripted tasks (Type 2) surpassed 
the number who were successful in the mimicking lessons (Type 3). 
In other words, students can be successful at these types of scripted 
thinking tasks, even more successful than in lessons designed to 
promote mimicking, if their willingness to think is first primed with 
the use of good non-curricular tasks. This makes sense. 
Type 1 tasks are more likely to engage students with 
their rich and interesting contexts and propel them 
into thinking than a task asking them to think about 
factoring quadratics, adding decimals, or counting. But 
once the thinking starts, it becomes an end unto itself, 
and students are not only more willing to think but they 
want to think. The non-curricular tasks (Type 1), in this 
regard, served as a primer for—and thus made room 
for—the more curriculum-driven scripted thinking 
tasks (Type 2).

Further investigation showed that although three lessons of non-
curricular tasks (Type 1) was enough to prime many classes, in some 
cases as many as five lessons were needed before the dispositions of 
the students shifted enough to allow them to be successful at scripted 
curricular thinking tasks. This investigation revealed that, in almost 
every situation, the teacher was able to predict when the class was 
ready to shift their thinking toward curricular thinking tasks.

Lucy I don’t know why, but they just seemed ready. There 
was no more whining, and the kids came into class 
excited about seeing the problem they would work 
on that day.

The key was, however, that in the transition from a non-curricular 
task (Type 1) to a curriculum thinking task (Type 2), nothing else 
changed. The teacher posed the task as a challenge—as a problem to 
solve—without any big declarations that now we are going to start 
doing curricular tasks in a different way.

This is not to say that all students were successful or that all students 
were willing to think. Far from it. Simply turning a basic curriculum 

Once the thinking 
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task into a thinking task does not mean students are automatically 
going to think. More things need to change in the lesson if thinking 
is to be built and sustained over time, and that is what the rest of 
this book is about. However, these results show that to get students 
thinking about curriculum tasks, they need to first be primed to do so 
using non-curricular tasks. Nothing in my research has shown a way 
to avoid this. You have to go slow to go fast.

In Chapter 9, I will discuss much more about how to build a sequence 
of scripted curricular thinking tasks (Type 2) that follow on the heels 
of the aforementioned engaging non-curricular tasks (Type 1) and 
allow students to effectively think their ways through large amounts 
of curriculum quickly. For now, however, it is sufficient to say that the 
goal of this book is not to get students to think about engaging non-
curricular tasks day in and day out—that turns out to be rather easy. 
Rather, the goal is to get more of your students thinking, and thinking 
for longer periods of time, within the context of curriculum.

In this chapter, as well as the introduction, mimicking is portrayed 
as something bad. Isn’t mimicking a good starting point for 

students before moving onto thinking tasks?

The question is not whether mimicking is good or bad. The 
question is, what is mimicking good or bad for? Mimicking is 

very good at teaching students how to replicate routines—the routine 
for factoring quadratics, adding decimals, dividing fractions, et cetera. 
So good, in fact, that once students start to have success with 
mimicking, they don’t want to stop. Mimicking is an addiction that is 
easily acquired at lower grades and difficult to give up at higher 
grades. You may have seen this when trying to explain a difficult 
concept and some of your students are asking you to “just show us 
how to do it.” The problem is that mimicking is only an effective 
strategy when the number of routines to memorize is small. As the 
student moves up in grades, the number of routines per topic 
increases, until this becomes an unmanageable and ineffective 
strategy. Yet students who have had success with it in the past are 
resistant to abandoning it. Furthermore, mimicking tends to create 
short-term success without the long-term learning that allows 
students to make connections with other topics in the same and 
subsequent grades. So they do not develop the web of connections 
that helps them understand mathematics.
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Mimicking is bad because it displaces thinking. Mimicking happens 
not alongside, but instead of, thinking. Likewise, mimicking is not a 
precursor to thinking. Mimicking requires less energy and less effort 
than thinking, and once the mimicking has begun, it is difficult to 
ask students to shift their attention to something that takes more 
time, more energy, and more effort. Our research on studenting 
and homework showed that only 20% of students who mimicked at 
the beginning of their homework assignment were even willing to 
attempt questions for which they did not have an analogous worked 
example and that would require them to think. And of those, only 
half were able to complete a question for which they did not have an 
analogous example in their notes.

I don’t have time to give up three to five days of my school year to 
do non-curricular tasks. Can’t I just jump right in with curriculum 

thinking tasks?

Starting to build thinking classrooms with non-curricular tasks 
is imperative. As already mentioned, their use dramatically 

increases your students’ success with scripted curriculum thinking 
tasks when you transition to those types of tasks. How it does this has 
not been mentioned, however. Well selected non-curriculum tasks, 
with their engaging contexts, propel students to want to begin to 
think. They create situations where every student gets stuck, which 
makes stuck an expected, safe, and socially acceptable state to be in. 
In essence, these tasks make it safe to fail and keep trying. And 
through these struggles, students begin to build confidence in their 
teacher’s confidence in them. All of these qualities are easier to build 
inside of highly engaging non-curricular tasks and are necessary 
when we transition students to curricular thinking tasks.

This is not to say that these same qualities can’t be built inside of 
curricular thinking tasks, but it is harder, takes longer, and will only 
work well with a few students. Curricular tasks are too familiar to 
signal that something has changed, and thereby are less likely to 
prompt a change in behavior.

If non–curricular tasks—especially highly engaging thinking 
tasks—are so good at engaging students, why don’t we just teach 

all of mathematics that way? There must be a collection of tasks, the 
whole of which will cover an entire curriculum.

This is a bold approach, which has been proven to work. This is 
the essence of Jo Boaler’s early research at Phoenix Park (Boaler 
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2002). Further, Maria Kerkhoff (2018) showed that after doing just 
18  rich tasks over the course of 18 classes, the student who she was 
studying encountered almost all of the curriculum outcomes for her 
grade, along with numerous curriculum outcomes from previous and 
future grades. In essence, if we just get students thinking about lots of 
different problems, the curriculum outcomes will eventually be 
covered, irrespective of which solution paths students follow. This is 
the approach a group of mathematics educators in Alberta took. They 
have created collections of tasks for Grades 2, 3, and 8, which allow 
them to cover all of the curriculum. You can access these collections 
by going to Alicia Burdess’s website (http://www.aliciaburdess.com/
teaching-through-problem-solving.html).

The problem is that such a move takes a lot of faith on the part of the 
teacher. And this faith is quickly eroded if there are set dates by which 
students must have learned certain concepts. The other issue is that 
the higher the students get in the grades, the more difficult it becomes 
to find collections of non-curricular highly engaging thinking tasks 
that will, in their entirety, cover curriculum—the more abstract 
mathematics gets, the more difficult it becomes (not impossible) to 
create such resources.

Even if I want to use curricular thinking tasks, it will take so 
much longer to have students think their way to solutions than if 

I just show them. How will I find the time for that?

There are a lot of aspects of time that came out in the research. First 
and foremost is the time it takes before students are given an 

opportunity to answer a question on their own. In lessons designed 
around having students mimic (Type 3), this opportunity does not 
occur until 15–35 minutes into the lesson. When using thinking 
curricular tasks, this happens in a fraction of that time. Looking back at 
the three sample scripts in this chapter, you will notice they are all brief. 
Very brief. I will discuss more in Chapter 6 how important this is. For 
now, however, it is enough to say that when relying on previous 
knowledge to prompt thinking, these types of scripts will always be brief.

The second aspect of time is how long it takes students to solve a task 
when asked to think versus when they are asked to mimic. In each of 
the example scripts, not only is the set-up quicker, the students tend 
to come to an answer more quickly. This may not be true the first time 
you design a curricular thinking script, but it goes faster and faster 
the more adept the students become at thinking.

http://www.aliciaburdess.com/teaching-through-problem-solving.html
http://www.aliciaburdess.com/teaching-through-problem-solving.html
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Finally, my research shows that when curricular thinking tasks are 
combined with the other 13 practices, students move through a lot of 
content very quickly. The script for factoring quadratics, for example, 
when used in a fully implemented thinking classroom context, will 
cover the entire unit on factoring quadratics in 40–70 minutes. 
Adding and subtracting decimals takes less. I will discuss this more in 
Chapter 9. For now, however, it is sufficient to say that yes, it will take 
more time in the beginning, but you will earn all that back as your 
classroom becomes a thinking classroom.

Can students really solve curricular thinking tasks (Type 2) 
without first being shown how to do them?

Yes. Even when these tasks were introduced on their own, 
students who were willing to think were generally successful at 

solving them. But not everyone was willing to think. Using highly 
engaging non-curricular tasks as a precursor to the curriculum 
thinking tasks increased dramatically the number of students who 
were willing to think while at the same time increasing the amount of 
time that all students were willing to think for—both of which will 
lead to more students being successful at solving the tasks.

For a curricular task to generate thinking, it should be asked 
before students have been shown how to solve it. Does this mean 

the task should come right at the beginning of the lesson?

Yes. In Chapter 6 I will more thoroughly discuss how important 
this turned out to be. In the meantime, suffice it to say that 

thinking tasks should be asked in the first five minutes from the time 
you begin the lesson.

Each of the examples in this chapter drew on prior knowledge. 
What does it look like when we are starting with an entirely new 

topic, a topic for which the students have no prior knowledge?

Curriculum is inherently spiraled. For this reason, it is seldom 
the case that students have no prior knowledge at all. In the rare 

cases where it is true, however, you can, if you wish, just tell the 
students something. But you still only have five minutes before you 
should ask them a thinking question. Take for example, the 
introduction of the Pythagorean Theorem. I offer two different scripts 
that can be used, the first of which relies on pattern spotting.
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Teacher  I am handing out a sheet with eight different triangles 
[see Figure 1.3], each with all its side lengths indicated. 
What sorts of patterns do you notice?

Figure 1.3 Pythagoras sheet.

A sheet structured as in Figure 1.3 would allow students to notice 
that all the triangles are right triangles. They may also notice that 
some of the triangles are proportional to each other. They may notice 
that the extra numbers on some of triangles are the squares of the 
sides. Finally, they may notice that there is a relationship among these 
square numbers.

The second script involves a more direct approach.

Teacher If you look at the three triangles I have drawn here, 
you will notice that they are all right triangles. All 
right triangles share the property that the sum of the 
squares of the shorter two sides equals the square 
of the longer side. This is called the Pythagorean 
Theorem, and it is written as a2 + b 2 = c2, where a and b 
are the lengths of the shorter sides, and c is the length 
of the longer side. For example, we see that in the first 
triangle 32 +42 = 52. In the second triangle we see that 
52 +122 = 132. Knowing this, consider this third triangle, 
where the shorter two sides are 8 and 15. What must 
the longer side length be?

Although very different in approach, both of these scripts have 
students doing a question they have not been shown how to do in the 
first five minutes. The first script promotes pattern spotting, while the 
second approach asks them to apply a known property. Regardless, 
they are going to have to think their way forward.
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So, I run the script, and the students successfully answer the 
thinking question I pose. What do I do next?

You ask a similar but more difficult question. All of Chapter 9 is 
about this, but for now just ask progressively harder questions. 

For example, in the second script above, you may ask the students to 
answer a question where the two shorter sides are 3.4 and 5.2 units 
long. Then ask them to answer a question where they are given the 
lengths of the longest and one of the shorter sides, et cetera.

Summary
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Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. In this chapter you read about the negative consequences of 
mimicking. Can you think of any positive benefits? If so, do 
these positive benefits outweigh the negative consequences?

3. The introduction mentioned that almost all students who 
mimic express that they thought this is what they were meant 
to be doing. This chapter shares that one of the ways in which 
students come to this conclusion is by having their teachers 
show them how to do something before asking them to try it 
on their own. What other ways may we be communicating 
that mimicking is what we want students to do—even if that 
is not what we want?

4. You have read in this chapter that curriculum is inherently 
spiraled and, therefore, there are very few examples where 
you would introduce a topic for which students have no 
prior knowledge upon which such a script can be built. 
Can you think of some examples of such situations in your 
curriculum? If you can, is there really no prior knowledge 
that can be drawn on?

5. In this chapter it was shown that students perform better on 
scripted curricular tasks if they have first experienced three 
to five classes of working on highly engaging non-curricular 
tasks. How do you feel about giving up this time? What are 
the barriers for you to do this? What do you stand to gain? 
What do you stand to lose?

6. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?
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Try This
As mentioned in the introduction, the ideas in the first three chapters 
are best implemented together. Of course, you can ignore this and 
implement the ideas in this chapter right now. If you are doing this, 
remember to start with three to five non-curricular tasks and to get 
students doing these in the first five minutes. If, however, you are 
going to heed the advice and wait until the end of Chapter 3 to try 
anything with your students, then this is the time to create some 
scripts in preparation for this.

This chapter included three examples (counting, adding decimals, 
and factoring quadratics) of how to script the introduction of a task 
so that you can ask students to think their way through a problem 
without first showing them how to do it. These examples are all 
predicated on the idea of asking the students a question about prior 
knowledge, and then asking a question that is an extension of that 
prior knowledge. Consider some topics you have recently taught or 
are about to teach, and create some scripts for these topics.
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We know from research that student collaboration is an important 
aspect of classroom practice, because when it functions as intended, 
it has a powerful impact on learning (Edwards & Jones, 2003; Hattie, 
2009; Slavin, 1996). You are likely already using groups in your 
classroom to some degree, but are you satisfied with the engagement 
you see in your students? Are they all participating in the ways 
you would hope? What kind of grouping practices work best for 
collaboration, or could make your own collaborative grouping efforts 
work better? Our research shows that the answer may not be what 
you think. In this chapter we are looking closely at how the way in 
which we group students for collaborative problem solving actually 
impacts the way students engage in the collaborative effort. By the 
end of the chapter you will have a method and rationale for grouping 
students that will drastically shift student engagement, participation, 
and community within your room.

The Issue
In all the classrooms I’ve researched and observed, one 
thing that always struck me was the number of teachers 
who incorporated collaboration into their teaching in one 

way or another. This generally ranged from simply having students 
sit in pairs and conducting turn-and-talks to having students work in 
assigned or self-selected groups for parts of the lesson. In elementary 
classrooms, I most often observed teachers using the strategic grouping 
method, where the teacher carefully arranges homogenous or 
heterogeneous groups to meet either the educational or the social goals 
for the class (Dweck & Leggett, 1988; Hatano, 1988; Jansen, 2006).

In our observations, we found that grouping for educational goals 
generally follows one of three rationales:

1. Pedagogy: Because a teacher believes that their students 
can, and will, learn from each other, the teacher will create 
either homogenous or heterogeneous groups based on 
students’ abilities, perseverance, or work habits.

2. Productivity: A teacher may arrange groups that lead to 
the completion of more work. This may, for example, require 
there to be a strong leader in a group for project work, 
or the teacher may prefer to group weaker students with 
stronger ones.
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3. Peacefulness: A teacher may create groups that 
intentionally keep friends or disruptive students apart, as 
such groupings may lead to less productivity.

Alternatively, a teacher may group for social goals for several reasons:

1. Diversity: A teacher may want to arrange students into 
groups so as to ensure a specific diversity (e.g., gender) exists 
within each group.

2. Integration: A teacher may use this method to push 
students out of their social comfort zones and help them 
collaborate with students with whom they don’t normally 
associate.

3. Socialization: Occasionally, a teacher may specifically 
want to reward performance or positive behavior by allowing 
students to work with their friends.

In high schools, on the other hand, we most often saw teachers 
allowing their students to form self-selected groups either for the 
whole lesson period or for a specific activity within a lesson. Although 
students may group themselves for the educational reasons listed 
(Cobb, Wood, Yackel, & McNeal, 1992; Yackel & Cobb, 1996), more 
commonly, students group themselves for social reasons (Urdan & 
Maehr, 1995). In a study where I looked specifically at the goals for 
how students self-select their groups, 95% of students either grouped 
themselves, or attempted to group themselves, in order to socialize.

The Problem
Regardless of whether teachers group for educational reasons 
or social reasons, there is almost always a mismatch between 
the teacher’s goals and the students’ goals (Kotsopoulos, 

2007). For example, whereas a teacher may have pedagogical reasons 
for wanting students to work together, the students—wishing instead 
to work with their friends—may begrudgingly work in their assigned 
groups in ways that cannot be considered collaborative (Clarke & 
Xu, 2008; Esmonde, 2009). These sorts of mismatches arise from 
the tension between the individual goals of students concerned 
with themselves, or their cadre of friends, and the classroom goals 
set by the teacher for everyone in the room. Couple this with the 
social dynamics often present in classrooms, and a teacher faces a 
situation where students not only wish to be with certain classmates, 
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but also disdain to be with others. In essence, 
no matter how strategic a teacher is in their 
groupings, when there is a mismatch between 
their goals and students’ individual goals, 
it means some students will be unhappy 
and will disengage. This disengagement is 
antithetical to a thinking classroom. I would 
venture to say that most teachers are familiar 
with this challenge.

In the context of a thinking classroom, there 
is an even more problematic situation that 
arises out of both strategic and self-selected grouping strategies. It 
turns out that regardless of what strategy you use, the students know 
what their role in the group will be that day. And rarely is that role to 
think. To better understand this, I spent over 40 hours in classrooms 
where teachers were using one of these two grouping strategies 
observing and talking to students. In an overwhelming number of 
cases, whether strategically grouped or self-selected, 80% of students 
entered their groups feeling like they were going to be a follower 
rather than a leader—to be a follower rather than a thinker.

Interviewer  So, now that you know what group you will be in, 
what do you think your role will be?

Stuart  What do you mean?

Interviewer  I mean, are you going to offer any ideas or take a 
lead on any of the work?

Stuart Probably not. I’m with Gabriel and Aisha and they 
are both brainiacs. That’s why the teacher put me 
with them.

Interviewer I notice that you are sitting with Francis, Nahal, 
and Deja again.

Amanda Yup. I always do.

Interviewer Your friends?

Amanda Yup.

Interviewer So, are you going to solve the problem today?

Amanda No way. That’s Deja’s job. I’ll just follow along.

These sorts of comments were so prevalent in my conversations with 
students that I ran a questionnaire on over 200 students in classrooms 

No matter how strategic a 
teacher is in their groupings, 

when there is a mismatch 
between their goals and 

students’ individual goals, 
it means some students 
will be unhappy and will 

disengage.
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where teachers were using either strategic grouping or self-selected 
groupings. I asked two questions:

1. If I told you that next class you are going to work in groups to 
solve a word problem, what is the likelihood that you would 
offer an idea?

2. If you were to offer an idea, what is the likelihood that your 
idea would contribute to the solution of the problem?

For Question 1, over 80% of the students said that 
it was unlikely or highly unlikely that they would 
offer an idea, and over 90% said it would be highly 
unlikely that one of their ideas would contribute to a 
solution. Irrespective of the grouping method being 
used, the vast majority of students do not enter their 
groups thinking they are going to make a significant, 
if any, contribution to their group. They are entering 
the groups in the role of follower, expecting not to 

think. That means that with the strategic groupings, other than those 
10% to 20% who are accustomed to taking the lead, the rest of the 
students, by and large, know why they are being placed with certain 
other students, and they live down to these expectations. Likewise, 
in self-selected groups, students fall immediately into the dictated 
patterns of leaders and followers that already exist within the social 
dynamics of children’s lives. Either way, these patterns of behavior are 
antithetical to the goals of a thinking classroom.

To counteract this, some teachers have adopted the practice of assigning 
a role to each student in a group—leader, recorder, timekeeper, resource-
getter, encourager, et cetera. But this assignment of roles only serves to 
exacerbate the aforementioned problem. I spent time in three classrooms 
where this practice was being used, and I observed even less authentic 
engagement with the activities. Rather than thinking about the task at hand, 
students were trying to adhere to their roles, which many found helpful 
in escaping from the actual work at hand—to solve a problem—to think.

While we clearly know the value and importance of student 
collaboration, the problem is that efforts to actualize collaboration 
through either strategic groups or assigned roles may be having a 
negative effect on how our students engage with each other and the 
task at hand. At the same time, self-selected groups seem to be of little 
help, as students group themselves for reasons antithetical to solving 
mathematical problems. You may have seen this, and been frustrated 
by it, in your own classroom as well. So, how to fix it?

Students, by and 
large, know why they 
are being placed with 
certain other students, 
and they live down to 
these expectations.
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Toward a Thinking 
Classroom

Adhering to the contrarian approach of beginning with a practice that 
is opposite to what the norm is, we decided to try random groupings. 
Random grouping, from the perspective of nexus of control, was 
opposite to both strategic and self-selected grouping. This idea was 
implemented with 11 different teachers. Some were 
hesitant at first, but because they saw the same 
problems with the current methods they were 
using, they were willing to try. Our first iterations 
involved the teachers making new randomly 
assigned seating charts for each of their classrooms 
and then presenting these to their students with the 
explanation that these were random assignments.

This proved to be spectacularly ineffective. We were seeing no greater 
benefits with this method than with strategic groupings. Students were 
falling into preconceived roles and not engaging in ways reported in 
the literature on effective collaboration. Interviews with students 
immediately revealed the problem.

Interviewer So, how do you like your new group?

Mitchel  It’s OK I guess.

Interviewer  Did you like that the teacher picked the 
group randomly?

Mitchel  Yeah right!

Interviewer You don’t believe they are random?

Mitchel  Of course not.

Although the new groupings were random, 
the students did not perceive the randomness 
in it. Why would they? The teacher putting 
up a new seating plan and saying it is random 
is substantively not that different from just 
putting up a new seating plan—something they 
have experienced many times before and that 
they knew to be strategic. Although we had 
removed the nexus of control from the teachers, 
the students did not perceive this to be the case.

The teacher putting up 
a new seating plan and 

saying it is random is 
substantively not that 

different from just putting 
up a new seating plan.
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So, we did an immediate adjustment, and used playing cards to assign 
the groups. This was simply done by labeling each table (or desk) 
group with a card rank (2, 7, jack, queen, etc.) and having students 
draw a card from a deck to determine what group they would be in 
and where they would sit. This simple change had an overwhelming 
effect on the students’ perception of how the groups were formed and 
where the nexus of control rested.

Interviewer So, how do you like your new group?

Mitchel Yup.

Interviewer Did you like that it was created randomly?

Mitchel Yeah. It was cool to pick a card.

Interviewer Cool?

Mitchel Yeah. I was hoping I would get a seven. Luis had 
already picked a seven.

Interviewer What did you get?

Mitchel A jack.

Interviewer Hmm . . .

Mitchel Maybe next time.

Although randomizing wrested the control 
from the teachers, making it visibly random was  
necessary for the students to both perceive and 
believe the randomness. We needed visibly random 
groupings. After several more iterations, with these 
11 teachers and others, more nuances emerged. 
First, we learned that the randomization needed to 
be frequent—approximately every hour. If we left 
it longer, then we began to see the roles within the 
group calcify into their active and passive states. We 
needed frequent visibly random groupings.

We also learned that, from Grade 3 up, the optimal group size was 
three. Groups of two struggled more than groups of three, and groups 
of four almost always devolved into a group of three plus one, or two 
groups of two. This is because for a group to be generative, it needs 
to have both redundancy and diversity (Davis & Simmt, 2003). 
Redundancy, in this context, reflects things that a group of students 
has in common—language, interests, experiences, knowledge. Without 
these commonalities they cannot even begin to collaborate. But if all 

Although randomizing 
wrested the control 
from the teachers, 

making it visibly 
random was necessary 
for the students to both 

perceive and believe 
the randomness.
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they have is redundancy, they will not achieve anything beyond what 
they enter the group with. To be generative, they also need diversity; the 
things that individual members of the group bring that are not shared by 
the others—different ideas, viewpoints, perspectives, representations, et 
cetera. Groups of three seem to have the perfect balance of redundancy 
and diversity. This is why self-selected groups tend not to be as 
productive—too much redundancy, not enough diversity.

Figure 2.1 A group of three students working collaboratively.

For Grades K–2, however, the optimal group size was two. Despite 
the lack of diversity this affords, students at this age are still 
developmentally in a stage of parallel play, and collaboration consists 
mostly of polite turn taking. What we learned was that groups of 
two, coupled with the guidance of the teacher, allows this polite turn 
taking to start to shift toward listening to each other and building on 
each other’s ideas—to shift toward true collaboration. This is not to 
say that your eighth graders are demonstrating great collaboration in 
your classroom, but rather that they have the skills in place to do so, 
and often use these skills outside the classroom.

Once we were implementing frequent and visibly random groupings, 
we saw an immediate uptick in the amount of students’ engagement 
and thinking. By removing the nexus of control from both the teacher 
and the students, the students entered their groups not knowing what 
their role would be that day. This allowed for different students to 
step forward and begin to think. We ran the aforementioned survey 
after two weeks of implementation, and we saw a definite increase in 
the number of students who would offer an idea. And after six weeks 

Source: SDI Productions /iStock.com 
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almost 100% of students said that they were either likely or very likely 
to offer an idea. This, despite the fact that only 50% believed that 
their idea would lead to a solution. The students were willing to try, 
irrespective of whether their idea would lead to a solution.

Aside from an increase in thinking we saw several other benefits in 
our implementation of frequent visibly random groups.

Willingness to Collaborate

Although many students rail against the groups they find themselves in 
on Day 1, at the three-week point this resistance is usually completely 
gone, and they are open to working with anyone they are placed with.

Researcher So, I noticed that last week you tried a few times 
to sit with Jackson. Are you still trying to do so?

Hunter No.

Researcher Why not?

Hunter At first, I thought that the teacher was trying 
to keep us apart. Then, on Friday, we got to 
work together.

Researcher So, do you still think the teacher is trying to keep 
you apart?

Hunter No. I don’t think she likes us working together, but 
when the cards came up the way they did, she 
didn’t change it. I guess it’s up to the cards now.

Researcher I saw what you did last week.

Jasmine What do you mean?

Researcher I saw how you switched groups.

Jasmine Oh that. That’s nothing.

Researcher But you didn’t do it this week. Why not?

Jasmine I guess it doesn’t matter so much who you are 
working with. I mean, it is just for one class, and 
then the groups change again.

Elimination of Social Barriers

When teachers allow students to self-select, what we see is often a 
reflection of the social structures easily observable in the hallways. 
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Students choose their friends, their affinity groups, or their 
social groups. These social structures can create barriers 
to collaboration in the classroom. With visibly random 
grouping, these barriers begin to fall away.

Researcher Tell me about how your group work 
went today.

Melanie Fine.

Researcher Who were you with?

Melanie I was with Aisha and Luis.

Researcher Can you tell me a little bit about Aisha or Luis?

Melanie Ok. Aisha is smart. I worked with her one time 
before. She really knows what is going on, so I try 
to listen carefully to her when she has something 
to say. She’s in my science class as well, and her 
sister is in my English class.

Researcher How do you know that Aisha’s sister is in your 
English class?

Melanie We figured it out today.

When students worked with new random partners every hour, they 
began to cross social boundaries and form an awareness about each 
other in ways that were not happening before.

Increased Knowledge Mobility

As mentioned, when students work in self-selected groups, the social 
barriers stay intact. These social barriers, in turn, create barriers to 
knowledge moving between groups. When the social barriers come 
down, so too do the barriers to knowledge mobility.

Researcher Good problem today, huh? Can you tell me how you 
guys solved it?

Idris Yeah, that was a tough one. We were stuck for a 
long time.

Researcher What did you eventually figure out?

Idris Well, we saw that the group next to us was using 
a table to check out some possibilities, and we 
could see that there was a pattern in the numbers 
they were using, so we tried that. That sort of 
got us going and we got an answer pretty quickly 
after that.
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Researcher Was it the right answer?

Idris It was, but we weren’t so sure. The group next to 
us had a different answer, and it took a long time 
working with them before we figured out which 
one was correct.

Knowledge mobility takes one of three forms: (1) members of a 
group going out to other groups to borrow an idea to bring back 

to their group, (2) members of a group going out to compare 
their answer to other answers, or (3) two (or more) groups 
coming together to debate different solutions. Or, like it did 
for Idris’s group, it takes on a combination of these forms.

Increases in knowledge mobility were accompanied by a 
decrease in groups’ reliance on the teacher and an increase 

in reliance on themselves (intragroup reliance) and other 
groups (intergroup reliance). The teacher was no longer the only 

source of knowledge in the room.

Increased Enthusiasm for Mathematics Learning

With the elimination of social barriers, students begin to enjoy 
mathematics class more.

James Math is now my favorite subject.

Jasmine I love this class. I mean, math isn’t my favorite 
subject. But I love coming here.

Kendra And the beginning of every class is a bit of an 
adventure when we get to find out who we 
work with.

Along with this greater enthusiasm we also saw decreases in student 
absences and lateness.

Reduced Social Stress

Despite potential early resistance to visibly random grouping, once it 
is up and running, many students come to enjoy the elimination of 
the social stress involved in self-selecting groups. The students who 
most benefit from this are the students who classify themselves as shy.
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Researcher How are you liking the random groups?

Amanda Love it. I don’t care who I’m with as long as I don’t 
have to try to get into a group myself.

Researcher Why is that?

Amanda I’m shy. In social studies the teacher always makes 
us pick our own groups. I hate that. I hate that 
feeling of asking if I can join a group and then being 
told no. I just want to work by myself in that class. 
But I don’t want to work by myself. It’s just so hard.

This relief is not restricted to only those who do not have strong social 
bonds in the classroom.

Interviewer How are you liking the random groups?

Le It’s good. I like that I don’t have to pick my groups.

Interviewer Really! I thought you always wanted to be with the 
other two girls, . . . umm . . .

Le Jennifer and Hillary.

Interviewer Right. Aren’t you friends any more?

Le Oh yeah. We’re friends. But I don’t always want to 
work with them. We never get anything done when 
we’re together. And it’s tough to say that to them.

Interviewer So . . .

Le Random groups helps me with that.

This relief is so profound that on several occasions I have seen students 
reminding the teacher to put them into visibly random groups.

In this chapter you talk about mobility of knowledge as a good 
thing. Won’t the students just come to rely on this and, instead of 

doing their own thinking, they will just copy from other groups?

No. In the hundreds of lessons I have observed where frequent visibly 
random groups were being used, I have seen fewer than 10 instances 

of a group copying from another group. Students tend not to treat 
knowledge mobility—students call it borrowing an idea—as a way to reduce 
thinking. Rather, they use it as a way to keep thinking when they are stuck.
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Will the students whose idea is being borrowed be OK with it?

The answer depends on the current culture in your class. In settings 
where students are used to competing for praise and prestige, 

groups will likely try to hide their answers from others. Thanks to the 
ubiquity of visibly random groups, however, and the subsequent 
elimination of social barriers, group boundaries begin to become 
porous—although group boundaries are defined for the period, these 
boundaries are clearly temporary and arbitrary. This allows them to 
also be seen as open, and, with the free movement of members from 
one group to another, ideas naturally begin to flow across boundaries.

You say that students will become agreeable to work in any group 
they are placed with, but I can think of some students that will 

not like this. Will they eventually?

Students being agreeable to work in any group they are placed in 
is not the same thing as students liking frequent visibly random 

groups. You will have students who would still prefer to work alone or 
pick their own groups. But our research shows that even these students 
do more thinking when in random groups.

You make it sound like mobility of knowledge will automatically 
start to happen. I have now been doing random groups for a 

while, and I’m not seeing it. Is there anything I can do to help it along?

I will discuss this at length in Chapter 8 through the lens of 
fostering student autonomy. For now, however, you can help it 

along by pointing out to groups where, in the room, they can find the 
knowledge they might need. You can also put groups together that 
you know need to move some knowledge between them.

When I use a deck of cards to create random groups, I get some 
groups of four and some groups of two, and I always seem to have 

one student who has no partners. How do you avoid this?

You need to set up the deck before you begin. First of all, have 
only three of each rank of card in your deck—three aces, three 

tens, et cetera. If you’re teaching Grades K–2, make this two of each 
rank. Second, make sure the total number of cards in your deck is 
equal to the number of students enrolled in your class. Finally, if some 
students are absent, remove a single card from each rank until you 
have the correct number of cards. This will ensure that there will 
never be a group of size one. It also has the benefit that if a student 
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arrives late, you simply let them pick a card from the remaining 
singletons and plug them into an already functioning group of two. 
This avoids having to make a new group out of students who arrive late.

I have some students who are constantly switching cards, or not 
going to the group that the card specifies. How do I deal with that?

There are two ways to deal with this. First, you can target that 
student and ask them to show you the card after they have picked 

it. Second, you can have all students show their card after they have 
chosen it. Both of these methods create the impression that you know 
what card a specific student has and that you will be watching to make 
sure they go where they are supposed to. It sounds crazy, but the 
students really believe that you know all their cards.

If I don’t want to use cards, are there other methods to randomize 
groups, and are they as good?

Some teachers like to use popsicle sticks with 
student names, name cards created by the 

students, or photographs of students to make groups. 
Others like to use technology. It doesn’t matter what 
you use, as long as it is random, and the students 
perceive it as random. Technology tools tend to be a 
bit of a black box, so sometimes students don’t trust 
that they are being truly random. To enhance the 
perception of randomness, you can let one student 
roll a dice and then come up and push the button on 
a digital randomizer as many times as the dice shows. 
Regardless of what method you use, however, we found that transitions 
are more easily facilitated if your method of randomization doesn’t just 
tell them what group they are in, but it also tells them where to go to meet 
their group. This is most easily accomplished by labeling clusters of desks 
or sections of the vertical boards (see Chapter 3) with the same labels as 
your randomizer. So, if you use cards, label the workstations with A, 2,  
3,  . . ., J, Q, K. If you use a digital randomizer that names the team by 
letters or colors, then use these to label the workstations.

I teach my kids all day and want to have them in groups for lots 
of different subjects. Should I be randomizing them for 

every class?
Although randomizing the groups about once an hour proved to 
be best, this is not practical if you have your students all day. 

Transitions are more 
easily facilitated 
if your method of 

randomization doesn’t 
just tell them what 

group they are in, but it 
also tells them where to 
go to meet their group.
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In those cases, we made use of natural transitions like lunch, recess, 
and coming back from the library or gym. In essence, you randomize 
them every time they come back into the classroom.

I have my students in desks. And they have all their stuff in their 
desks. Trying to move these around several times a day will be a 

nightmare. Any suggestions?

Only in elementary schools do we allow students to own real 
estate in the classroom. And with this comes a heightened sense 

of entitlement, ownership, and protectiveness over their real estate. 
You may have seen students getting stressed when someone sits in 
their desk. We found that the best way to deal with this is to get their 
stuff out of the desks and store it in bins elsewhere in the classroom.

I can think of two students right now who absolutely should not 
be together. How do I deal with this?

There are several reasons we may wish to keep students apart 
from each other. Ironically, regardless of the reason, those 

students often want to be together. And that will happen when you 
start randomizing your groups—usually on the first day. The best 
thing to do when this happens is to visit that group first and just say, 
“Are we going to have a problem here?” More often than not, these 
students are so thrilled to be together that they do not want to ruin 
their chances of it happening again.

If the situation is one where the students don’t want to be together, 
then the intervention is different. Treat them being together like it is 
the most normal thing in the world—just like any other group. The 
more normal you make it, the more likely they are to be OK with it. 
Students are highly attuned to the things that you worry about—if 
you worry about them being together, then they will fixate on that as 
well. If, despite this, you sense trouble brewing, visit the group, and 
remind them that it is just for one class and that you expect that they 
will be respectful to each other.

If the situation is one where the students really shouldn’t be together, 
then you will find a way to work around this. However, be certain that 
it is the case that they really shouldn’t be together and not that you 
perceive or prefer that they shouldn’t be together. There is a difference.

I’m worried what will happen when a weaker student ends up in 
the same group with a stronger student. Won’t that weaker 

student get excluded or marginalized?
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I will discuss this issue in greater detail in Chapter 9. For now, 
however, I will just say that aside from mobilizing knowledge, 

frequent visibly random groups also mobilizes empathy. As a society we 
give far too little credit for the empathy that children have for 
each other. Perhaps this is a by-product of our efforts to 
stem school and social media bullying and exclusion. In 
our efforts to stem these social ails we build up an 
assumption that, without our inter ventions, all kids 
would be capable of perpetrating such acts. But this is 
not true. Children have an unbelievable capacity for 
empathy for each other. They know which students are 
strong and weak, which have special designations, and 
which receive adaptations or accommodations, and yet they still 
see each other as peers and as friends. Random groups puts this empathy 
into motion and gives it a venue to play out in. I have many times been in 
classrooms where I have observed students make room in their group for 
someone who is academically weaker. For example, the following exchange 
took place in a Grade 10 classroom.

Phil  OK, Amber, you are going to be our calculator girl. 
Whenever there is something to calculate, you are going 
to help us with that.

Steve  You. You’re the one—the one that is going to help us get 
through this.

Amber is a girl with an intellectual disability, and these boys found 
something that Amber could be successful with, supported her in 
this, and celebrated her and with her when she “helped them get 
through it.”

For a long time now I have been working on differentiating my 
instruction for my learners. This works best if my students are in 

ability groupings. How will that work if I start to randomize them?

It will be difficult for you to believe this right now, but over time 
it will be fine. This is for three reasons. First, with the integration 

of other thinking practices from this book, all your students will 
become better at thinking—and they will do so in ways that are not 
predicted by your current perception of your students’ abilities. Some 
of your strong students will reveal themselves to only be strong at 
mimicking and will struggle on thinking tasks. Some of your weaker 
students will prove themselves to be much better at thinking than 
others in the class. And the ones in the middle will completely 
reshuffle your perceived hierarchy. So, whatever ability groupings you 
thought you would make would not be homogeneous.
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Second, differentiation looks different in a thinking classroom. I will 
discuss this in detail in Chapter 9. For now, however, I will just say that 
in thinking classrooms we start all groups on the same task and then 
differentiate the hints and extensions we give each group depending 
on how they are doing.

The third reason not to worry about this is that, as mentioned earlier, 
diversity is a strength—diverse groups are able to be more creative 
and more generative.

Sometimes I like to let students think and work on a task before 
they go into their groups. Should I still do that with random groups?

No. In our research we found that when we did this, it created too 
much diversity. The students who knew what they were doing would 

complete the task, while the ones that had no clue made no progress. 
When these students came together in random groups, the differences in 
their abilities was then too great, and less collaboration took place.

Summary
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Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. What is the worst combination of students that can come 
together in random groups? What is this perception based 
on? Is there any possibility that this could go well?

3. Can you think of some students who would benefit greatly 
from visibly random groups? Why would they benefit?

4. Can you think of some students who will likely not enjoy 
random groups? Would it still be good for them?

5. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
As mentioned in the introduction and Chapter 1, the practices in the 
first three chapters are best implemented together. In preparation 
for this, figure out what your preferred method of randomizing the 
students is. Keep in mind that whatever method you choose should 
not just tell your students what group they are in, but also where to go.



CHAPTER 3
WHERE STUDENTS WORK IN A 

THINKING CLASSROOM
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Now that we have discussed thinking tasks and have put our students 
into visibly random groups, we need to find somewhere for them to 
work. The norm is to have them sit together at a table or a cluster of 
desks and to do their work in their notebooks. But is this the most 
conducive workspace if we’re trying to build a thinking classroom? 
This chapter presents the results of explorations around alternate 
workspaces and the impact that they have on creating and sustaining 
thinking. By the end of the chapter you will learn what the optimal 
workspace is for thinking as well as what it is about other workspaces, 
including desks and notebooks, that makes them so ineffective.

The Issue
One of the most enduring institutional norms that exists 
in mathematics classrooms is students sitting at their desks 
(or tables) and writing in notebooks. With the exception 

of some primary classrooms, I saw this in every classroom I visited. 
Students sit and take notes in their notebooks. They sit and do now-you-
try-one tasks in their notebooks. And they sit and do their homework 
in their notebooks. In fact, there are some students who spend more 
hours of their day sitting and writing in their notebooks than they 
spend sleeping. So, should we add to this by also having students sit 
and work in their notebooks while working on thinking tasks?

The Problem
That would be fine if this were the work space most conducive 
to initiating and sustaining thinking. The problem is that it 
is not. As mentioned, the notebook has become the catchall 

for all student work in the mathematics classroom. From taking 
notes to completing now-you-try-one tasks to doing homework, the 
notebook is where students do their work. All these activities, in and 
of themselves, are very different from each other. Yet, because they 
are all done by sitting and writing in notebooks, the students bring 
the same behavior and level of energy, engagement, and attention to 
all three activities. Note taking, as we will see in 
Chapter 10, is a largely passive activity, which, as 
we saw in Chapter 1, promotes mimicking. As we 
saw in the introduction and will see in Chapter 7, 
both now-you-try-one tasks and homework also 
rely heavily on mimicking. In short, sitting and 
working in notebooks promotes and rewards, 

The continuity of the 
workspace ensured a 
continuity of student 

behaviors.
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in continuous and ubiquitous ways, passive mimicking 
behaviors. If we then ask students to work their way 
through thinking tasks while sitting and working in their 
notebooks, it is not surprising that we get the kind of 
result I did when visiting Jane’s class all those years ago. 
The continuity of the workspace ensured a continuity 

of student behaviors. And when those behaviors did not produce 
results, students quickly gave up.

So, what do we do? Students need a place to record 
things for future reference. They need a place to 
do their homework. The notebook is the obvious 
place to do that. I don’t disagree with that, and I 
will deal with these topics in Chapters 10 and 7, 
respectively. But just because sitting and writing 
in the notebook is the obvious place for some 
activities, it does not have to be the workspace for 
all activities.

Toward a  
Thinking Classroom

We began experimenting with alternative workspaces for the part of 
the lesson where students are working on thinking tasks. Adhering to 
my contrarian design principles, the first thing we tried was having 
students stand and write on portable whiteboards that were lying 
on their desks. This produced positive results in classrooms where 
we could remove the chairs, but in situations where the desks were 
attached to the chair, students found their way back into their seats. 
Although this still produced more thinking and engagement than 
having them write in their notebooks, we still saw non-thinking 
behaviors like stalling and faking.

We tried having the students standing at wall-mounted whiteboards 
when working through the thinking tasks (see Figure 3.1). This almost 
completely eliminated the stalling and faking behavior and had a huge 
effect on the amount of time students were willing to spend thinking 
when working on thinking tasks. When we coupled this with the 
benefits of visibly random groups (Chapter 2), the thinking behavior 
increased by an order of magnitude. In the 15 years that I have been 
engaged in the thinking classroom research, nothing we have tried has 
had such a positive and profound effect on student thinking as having 

Just because sitting and 
writing in the notebook 

is the obvious place 
for some activities, it 
does not have to be 

the workspace for all 
activities.
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them work in random groups at vertical whiteboards. Students were 
thinking longer, discussing more mathematics, and persisting when 
the tasks were hard.

The changes were so transformative that I decided to run a controlled 
experiment wherein we compared student thinking and engagement 
for a number of variables across five different workspaces—students 
standing at vertical whiteboards, sitting at horizontal whiteboards, 
standing at flipchart paper mounted on the wall, sitting at flipchart 
paper on a table, and sitting with their notebooks. Students were put 
into groups and randomly assigned to one of these five workspaces. 
In each classroom that we ran the experiment, all five workspaces 
were being used.

Once assigned to a workspace, all groups in that classroom were given 
the same thinking task to work on while we timed their behaviors 
across three variables:

1. how long (in seconds) it took them to start talking about 
the problem,

2. how long (in seconds) it took them to make their first 
mathematical notation on whatever workspace they were 
assigned to, and

3. how long (in minutes) they were willing to keep working 
without the teacher needing to encourage them to 
keep going.

Figure 3.1 Students engage with wall-mounted whiteboards.
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We also used a scale of 0 (none) to 3 (lots) to score their behaviors on 
a further six variables:

4. how much discussion there was,

5. how eager and enthusiastic they were to start,

6. the degree to which every member of the group participated 
in the activity,

7. how persistent they were at trying to solve the problem,

8. the amount of knowledge mobility, and

9. the degree to which their written work was non-linear.

Regarding Variable 8, our initial attempts at having students work 
on vertical whiteboards had shown us how much movement of ideas 
occurred and how positive it was, and I wanted to capture this in the 
data. With Variable 9, my studenting research had shown that when 
students are not mimicking, their work tends to be messier than when 
they are mimicking, and although this is not a perfect indicator of 
thinking, I wanted to capture it in the data as well.

This experiment ran in five different classrooms. Figure 3.2 shows the 
average time and scores for a given workspace and a given variable 
across these five different classrooms.

Figure 3.2 Average times and scores on the nine measures.

These results clearly show that having students work on whiteboards 
produced better results across almost all variables than if the students 
worked on flipchart paper—irrespective of whether they were standing 
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or sitting. The data also show that across almost all 
variables, any alternate workspace produced better 
results than having students work through thinking 
tasks in their notebooks while sitting at their desks. 
Observations and interviews with students during 
this experiment and in other settings have since 
revealed that the main reason for these results is that 
when they work on whiteboards, they can quickly 
erase any errors, which, for them, reduces the risk 
of trying something. While the private, familiar, and small nature of 
notebooks provides this same sense of low risk, the very public and 
permanent nature of the flipchart paper creates more risk and places 
greater emphasis on correct answers. The time to first notation across 
these five workspaces is reflective of these insights from students.

The results also show that, with both flipchart paper and whiteboards, 
standing produced better results than sitting. This is not surprising. 
We know from physiology that standing is better than sitting—
and not just in a sitting is the new smoking kind of way. Standing 
necessitates a better posture, which has been linked to improvements 
in mood and increases in energy (Peper & Lin, 2012; Wilson & Peper, 
2004). We also know that the majority of communication is non-
verbal (Mehrabian, 2009), consisting of gestures, facial expressions, 
tone of voice, and body language. Standing gives a larger canvas for 
these forms of non-verbal communication (Wells, 2014).

Standing also afforded an increase in knowledge mobility. Having 
students work vertically makes their work visible to everyone in the 
room, thereby increasing the porosity between groups, which, in 
turn, heightens the possibility that ideas will move between groups. 
As mentioned in Chapter 2, increases in knowledge mobility also 
increased students’ reliance on each other—both within and between 
groups—while at the same time decreasing their reliance on the 
teacher as the only source of knowledge in the room.

However, all of these reasons for why vertical 
work surfaces produce better results are trumped 
by something that emerged out of conversations 
with students—slowly over many years. It 
turns out that when students are sitting, they 
feel anonymous. And the further they sit from 
the teacher and the more things—desks, other 
students, computers, et cetera—are between 
them and the teacher, the more anonymous 

When students work 
on whiteboards, they 
can quickly erase any 

errors, which, for them, 
reduces the risk of 
trying something.

When students are 
sitting, they feel 

anonymous. And when 
students feel anonymous, 

they are more likely to 
disengage.
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they feel. And when students feel anonymous, they are more likely to 
disengage—in both conscious and unconscious ways. When students 
feel anonymous, they are consciously aware that they can shift their 
focus from the tasks at hand. What they shift this focus toward can 
range from completing homework for another class to playing on 
their phones. Regardless, this is a conscious decision, and they are 
aware and deliberate about where they choose to put their focus. 
But this shift in focus can also be unconscious, away from the task at 
hand. What that focus shifts to is often a sort of passive and automatic 
checking for social media notification on their phone—something 
students do often when they feel bored. But it can also consist of just 
drifting away, checking out, or zoning out, as was observed frequently 
by us and labeled by students upon seeing pictures of themselves.

Having students standing immediately takes away 
that sense of anonymity and, with it, the conscious 
and unconscious pull away from the tasks at hand. 
This is not to say that students feel outed or on 
display in any sort of way. When all the students are 
working on vertical whiteboards, they do not feel 
unsafe. They just don’t feel safe to get off task. This, 
coupled with the non-permanence afforded by the 
whiteboards, made the vertical whiteboards the 
best workspace for students to do their thinking.

Having students 
standing immediately 
takes away that sense 
of anonymity and, with 

it, the conscious and 
unconscious pull away 
from the tasks at hand.

At the same time, vertical whiteboards offered an extra advantage from 
the teachers’ point of view. From our own observations during this 
experiment, as well as in numerous settings using vertical whiteboards 
since then, we know that this workspace provides teachers with an 
ability to see everything that is happening in the room, and this 
enhances their ability to know at all times where a group’s thinking 
is, how far they have progressed on the task, and when and where 
it’s necessary to provide hints and extensions—something that will 

Figure 3.3 Student groups utilize non-permanent surfaces.
Source: Photo courtesy of Alex Overwijk. Used with permission.
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be discussed at length in Chapter 9. In other words, it aids teachers 
in their continual formative assessment and ability to provide and 
solicit feedback.

Most teachers, however, do not work in classrooms with whiteboards 
to accommodate 8–12 groups. For the last 20 years, classrooms have 
been outfitted with fewer and fewer whiteboards and more and more 
technology. Brand new schools often provide teachers with only one 
small whiteboard on the assumption that their teaching practice 
will primarily utilize technological alternatives to writing on boards. 
Retrofitting these classrooms with enough whiteboards for eight or 
more groups to work comfortably can be expensive. Fortunately, there 
are a number of very good, and inexpensive, alternatives. For one, 
blackboards work just as well. Windows also work as vertical erasable 
surfaces, as do vinyl picnic table covers, shower curtains, and cellophane 
(the kind you make gift baskets out of or wrap flowers in). For a 
more rigid alternative there are products that can be bought at home 
improvement stores. These are made of medium-density fiberboard 
with a white melamine finish on one side and are often referred to as 
shower board. At the same time there are a number of commercial 
products such as Wipeboards by Wipebooks, Better than Paper by 
Teacher Created Resources, and Dry Erase Surface by Post-It that have 
been manufactured specifically to function as whiteboard alternatives. 
With this wide range of alternatives available, there has never been a 
classroom that we could not outfit, in some way, to accommodate every 
group working on a vertical non-permanent surface. And because of 
all these alternatives, we stopped talking specifically about whiteboards 
and instead started referring to them as vertical non-permanent 
surfaces (VNPSs) after the qualities that proved to make whiteboards 
so conducive to thinking—vertical and easily erasable.

The aforementioned control experiment aside, from the moment we 
first tried having students work on VNPSs everything we have seen 
indicates that this is an effective way to increase student thinking 
and engagement. When coupled with random groups, non-thinking 
behaviors like slacking, stalling, and faking, for the most part, fall 
away. When coupled with the use of thinking 
tasks given early in the lesson the ability to mimic 
disappears. What is left is an environment that not 
only supports thinking, but also necessitates it. 
Since I began this research over 15 years ago, and 
ever since, I have never found a workspace that 
even comes close to these results.

What is left is an 
environment that not 

only supports thinking, 
but also necessitates it. 
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This is not to say that the effectiveness of VNPSs cannot be enhanced 
by micro-moves, and, just as they did with the research on random 
groups, a number of these emerged and were experimented with 
during our research. For example, it works better if groups are close 
to each other without being crowded. The proximity of groups has a 
big impact on how well knowledge moves between groups. Likewise, 
using vertical whiteboards is enhanced by each group having only 
one marker. When every member of the group has their own marker, 
the group quickly devolves into three individuals working in parallel 
rather than collaborating. Finally, the experience is made easier for 
you as a teacher if you carry a marker that is a different color than the 
others in the room. This allows you to quickly discern where you have 
contributed and what you contributed last time you visited a group. 
And if your color is prominent and consistent, neighboring groups 
start to attend to the hints and extensions that you have left behind 
and use that information to keep themselves moving forward.

You again talk about knowledge mobility as if it is a good thing. 
Won’t the vertical surfaces just make it easier for groups to copy 

each other?

Again, in all the years I have been in classrooms where teachers 
are using VNPSs, I can count on one hand the number of times 

that I saw a group copying line for line, symbol for symbol, what 
another group had done, without doing any thinking on their own. It 
just doesn’t happen. In a culture that values thinking—as opposed to 
answers—there is no motivation to just get the answer. It’s the thinking 

that matters. So, the students may look around and 
use what others have done as inspiration for what 
they should try next—sometimes even talking to 
other groups about what they have done. While 
working on thinking tasks, students generate lots of 
ideas to try. Knowledge mobility is just another 
source for ideas for them to try and is a natural 
consequence of the porosity of group boundaries 
described in Chapter 2.

If we are only giving each group one marker, how do I ensure that 
everyone is contributing?

In a culture that values 
thinking—as opposed 
to answers—there is 
no motivation to just 

get the answer. It’s the 
thinking that matters.
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The quick answer to this is that you move the 
marker around. This can be done using varying 

degrees of subtlety. For example, every time you visit a 
group you casually ask for the marker from whoever is 
holding it, and when you leave you hand it to a different 
member of the group. When you are first starting out, 
giving it to the student standing furthest from the board is a good 
strategy. This is subtle. Less subtle is asking the group who hasn’t held 
the marker yet and giving it to that student. Even less subtle is setting 
a timer that is loud enough for all students to hear and telling them 
that every time the timer goes off, they must pass the marker to 
another member of the group. After a very few weeks, students will 
begin to automatically move the markers around.

Moving the marker sounds great, but what if I have a student 
who has nothing to contribute. What good is it going to do them 

to have the marker?

In these cases, you can add a rule, either for just this group or for the 
whole class, that whoever is holding the marker is not allowed to 

write any of their own ideas—they can only act as a scribe for what others 
say. Not only does this improve communication in the group, but it 
ensures that the group moves at the pace of the slowest learner. It also 
reduces the likelihood that one very quick thinker takes over the work 
while the others watch passively. If you couple this with the strategy that 
a group does not get the next task or extension unless every member of 
the group can explain how they solved the previous task, then you are 
necessitating that group members take care of each other’s learning.

My class has students with a wide range of abilities. How well will 
this work for them?

First, every class has a wide range of abilities. This is a defining 
quality of classrooms. However, the data upon which you are basing 

this assertion come from how students performed with your previous 
classroom norms. Once you get students thinking in random groups and 
on vertical surfaces, the playing field is sufficiently altered to allow new 
abilities to emerge. Every teacher who has done this has come to the 
realization that some of who they thought were their best students are 
actually quite weak at thinking tasks, and some of who they thought were 
their weak students are actually very good at thinking tasks.

This is not to say that your previous informa tion is completely wrong, 
but rather that it is not as relevant when you go random and vertical. 
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The wide range you see in your students’ 
abilities when they are working individually 
in their notebooks is a product of their 
hugely varied acquisition and retention of 
mathematical knowledge. When students get 
into their groups and start working on vertical 
surfaces, the skills they need to be successful 
are things like communication, perseverance, 
patience, self-reliance, et cetera. And although 
these skills will vary throughout the room, 
the variance is typically not as great as with 

mathematical knowledge.

I have tried this, but I find that my students are too eager to erase 
things that are wrong, and then they lose track of what they have 

done. How do I stop this?

The freedom to erase is vital to the students feeling safe to try and 
fail and try again. So, at one level, we do not want to stifle their 

freedom. At another level, however, when they erase too much. it can 
become detrimental to their ability to move forward. At the same 
time, we want them to be comfortable with their mistakes. There are 
two answers to this problem. The first is to wait. The urge to erase 
typically goes away after a while, and they begin to erase only when 
they run out of room. The second answer is to talk to the students, but 
only after they have been working on VNPSs for a few weeks. You can 
suggest that they draw a box around things they want to erase and 
draw a single line through it—call it slow garbage. Alternatively, or 
additionally, you can talk about how all ideas are valuable, and even 
things that are wrong have some value. Either way, you need to be 
careful not to constrain their freedom to erase too much or too soon.

One area where you can impose more constraints is around the 
erasing of others’ work. This can diminish a student’s contribution, 
which is never OK. You should set rules that students are not allowed 
to erase someone’s work without their permission.

When students get into 
their groups and start 

working on vertical 
surfaces, the skills they 

need to be successful are 
things like communication, 

perseverance, patience, 
self-reliance, et cetera.



67CHAPTER THREE | WHERE STUDENTS WORK IN A THINKING CLASSROOM

Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. What must change in your room in order for you to gain 
the wall space necessary to get all of your students working 
on a VNPS?

3. Which strategy for moving the marker around did you like 
the best and why?

4. In this chapter you read about the notebook as a catchall—
the place where we default to having students do their work. 
Think about all the different types of things you ask students 
to do in their notebooks. Which of these, other than doing 
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thinking tasks, can you imagine having your students 
doing on VNPSs?

5. What else happens in your classroom that can be enhanced 
by having the students work on a VNPS?

6. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
Now that you have read the first three chapters, you may want to try some 
of these ideas out in your classroom. As mentioned in the introduction, 
it is best to implement the ideas of the first three chapters—thinking 
tasks, frequent visibly random groups, and VNPSs—together. The 
reasons for this will be discussed more in Chapter 15. For now, however, 
if you are ready to try these ideas, I provide some highly engaging non-
curricular thinking tasks here for you to start out with. Recall from 
Chapter 1 that it is best to do three to five lessons of these types of tasks 
before shifting to scripted curriculum thinking tasks. And recall from 
Chapters 2 and 3 that it is important to have students in random groups 
working on VNPSs. Utilizing all of the micro-moves from each of the 
first three chapters will enhance the experience. To start with you might 
want to focus on these:

• Avoid setting up the tasks so they can be solved through 
mimicking.

• Randomize in a way that is visible to students.

• In Grades K–2 form groups of two, and in Grades 3–12 form 
groups of three.

• Set up your method of randomization such that it tells 
students where to go.

• Have only one marker per group.

• Have groups in close (but not too close) proximity to 
each other.
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Grades K–3: What color am I?

What color is each shape if

• blue has no corners,

• green is between red and black,

• green is on the left of orange, and

• purple is next to red.

Source: Adapted from the Coloured Shapes task by © Crown Copyright 2000.

Grades 4–7: How many 7s?

If I were to write the numbers from 1 to 100, how many times would I 
use the digit 7? What if I wrote 1 to 1000? How any zeros?

Grades 8–12: Split 25

Decompose 25 using addition. For example,

What is the biggest product you can make if you multiply the 
addends together?

(Note: The examples bias an assumption that the addends must be 
whole numbers. However, the instructions do not specify this. Let this 
fact emerge after they have found a maximum for whole numbers.)
Source: Adapted from a task by Malcolm Swan.



CHAPTER 4
HOW WE ARRANGE THE FURNITURE 

IN A THINKING CLASSROOM
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A thinking classroom is defined, largely, by the kinds of 
activities that students engage in and how the teacher 
facilitates these activities. So far, I have discussed 
a number of results that show how thinking can be 
occasioned through the tasks we choose, how we 
group students, and where they work. These practices 
have been proven, over and over again, to increase 
the amount of time students spend thinking in the 
classroom. But what happens when the students and 
the teacher go home, and all that is left is the room and 
what is in it? Is it still a thinking classroom? Obviously not. If there 
are no students to do the thinking, it is not a thinking classroom. Or 
so I thought. In this chapter you will learn about the results of the 
research into how the physical organization of classroom furniture 
affects student thinking and how any classroom can be reorganized 
to help optimize student thinking.

The Issue
At its core, a classroom is just a room with furniture. 
Absent the students and the teacher, a classroom is an 
inert space waiting to be inhabited, waiting to be used, 

waiting for thinking to happen. This is not to say that the classroom, 
in its inert form, has no role in what happens in it. It actually has a 
huge role in determining what kind of learning can take place in it. 
As an extreme example, a gymnasium allows for the possibility of a 
type of learning that is different from a woodwork shop, which, in 
itself, allows for a type of learning that is different from an art room 
or a music room. In short, classroom spaces are designed for specific 
types of learning. This is true of a mathematics classroom as well. 
Different classroom setups allow for different types of learning. 
We have already seen this with respect to vertical non-permanent 
surfaces. Classrooms with lots of VNPSs allow for the possibility 
of a different type of learning experience than classrooms without 
them. But how a classroom is set up goes well beyond whether it has 
whiteboards or not.

The Problem
Early on in the research into building thinking classrooms, 
I made an interesting observation. Every time we worked 
in classrooms that were super organized—desks or tables 

in perfect rows, in-baskets and out-baskets for all eventualities, 

What happens when 
the students and the 

teacher go home, and 
all that is left is the 
room and what is in 

it? Is it still a thinking 
classroom?
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everything color coded and in its place—we had 
more difficulty generating thinking. It didn’t 
matter whether we were experimenting with 
vertical surfaces, random groups, how to answer 
questions, homework, or something else. If the 
room was super organized, we had more difficulty 
generating positive results. But, when we were 
working in classrooms that were disorderly, but 

not overly so, we had better results. What was it about those super 
organized classrooms that were negating some of our otherwise 
effective practices for generating thinking?

Thinking is messy. It requires a significant amount 
of risk taking, trial and error, and non-linear 
thinking. It turns out that in super organized 
classrooms, students don’t feel safe to get messy 
in these ways. The message they are receiving is 
that learning needs to be orderly, structured, and 
precise. In these perfectly organized classrooms, 
the physical spaces in which they are being asked 
to think is incommensurate with the messiness of 
thinking. This is a problem. On the other hand, 
thinking should not be completely unstructured. It 
needs elements of representation and organization 
for patterns to begin to emerge. Therefore, overly 
chaotic spaces are not the answer either.

When I looked closely at the types of classrooms from which positive 
results were consistently emerging, it became clear that they were 
neither too organized nor too chaotic. They were relaxed spaces in 
which students felt safe to take risks, to try, and to fail. At the same 
time, they were not so chaotic that the physical structure of the 
classroom became a distraction to the students. It seemed that a 
classroom needed to have a just-right amount of disorder for thinking 
to flourish. I wanted to find this minimum amount of disorder.

Toward a  
Thinking Classroom

It turns out that how desks and tables are arranged within a classroom 
says more about what kind of learning behavior—and hence, 
thinking behavior—is expected in that room than anything else.  
A  teacher may have a relaxed attitude about precision, but if the 

Every time we worked 
in classrooms that 

were super organized 
we had more difficulty 

generating thinking.

Thinking is messy. It 
requires a significant 
amount of risk taking, 

trial and error, and 
non-linear thinking. It 
turns out that in super 
organized classrooms, 

students don’t feel 
safe to get messy in 

these ways.
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desks are in razor straight rows, that classroom is telling students that 
orderliness matters. 

Think about the last time you attended a professional 
development session. If the room was full of chairs, 
had no tables, and had a podium, you knew you were 
going to get a lecture—and you knew this long before 
the session started. If you walked in and there were 
tables, neatly organized into rows with chairs only on 
one side so that everyone was facing the front, you 
knew you were also likely to get a lecture—but with 
the possibility of some activity. If there were tables 
that had chairs all the way around them, you knew that there would 
be time given to discussion. In short, when you walked into the room, 
you knew immediately what to expect—and that expectation shaped 
your behavior. In some cases, you may have turned around and walked 
out, if that was an option. If it wasn’t an option, you may have chosen to 
sit at the back, or with your friends, or made some other choice. How 
the room was set up immediately told you what was about to happen, 
and that began to shape your attitudes and behaviors long before the 
session facilitator began speaking. How the furniture is organized in 
the room makes a difference.

In a thinking classroom, how the furniture is organized turns out to 
make a big difference. Furniture placement sends a message. What 
is important is that the message that is sent is commensurate with 
the activity that is intended. That is, a thinking 
classroom needs to be organized in such a way that 
says thinking, collaboration, and risk taking are 
expected. Rows of desks do not achieve this—even 
if the desks are put together in groups of two or 
three. Neither do neat rows of tables positioned so 
students all face the front. These are antithetical to 
the message we want to send.

In my efforts to find the optimal furniture placement for a thinking 
classroom, I simply showed students pictures of a variety of classrooms 
and asked them what they thought the teacher and teaching would be 
like in these rooms. Each of these pictures (see Figure 4.1) showed a 
classroom with different placement of desks and tables. The first thing 
to emerge from these data was that straightness equated to order—
orderly teacher and orderly teaching. It didn’t matter whether the 
room had desks or tables; if they were arranged along straight lines, 
then students perceived this to mean that the classroom was organized 

When you walked into 
the room, you knew 
immediately what 

to expect—and that 
expectation shaped 

your behavior.

In a thinking classroom, 
how the furniture is 

organized turns out to 
make a big difference.
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and well structured. Deeper probing revealed that these assumptions 
extended to the expectations of the students and their behaviors—
that they would also be orderly, that their work and personal spaces 
would be organized, and that disorder would be frowned upon. While 
some of the students expressed appreciation for this kind of order, the 
majority expressed that being a student in such a class would come 
with a lot of expectations and pressure. In short, straight lines was—
good or bad—communicating what was expected in those rooms.

Figure 4.1 Classrooms with different furniture placement.

Symmetrical furniture placement—placement of desks into a 
horseshoe or circle, or placement of tables such that all tables are 
parallel to each other—as it turned out, also conveyed an expectation 
of order. Because symmetry is often a byproduct of straightness, 
this result was slower to emerge. The same was true of fronting—
the placement of chairs so that all students face toward the front 
of the room. Fronting the room, like straightness and symmetry, 
communicates that order and compliance are expected in a room. 
It also communicates that students will be doing a lot of watching 
and listening. If all three of the furniture placement characteristics—
straightness, symmetry, and fronting—are present (see Figure 4.2), 
then students perceive a room to be very orderly and expect that all 
activity will be centered on the teacher.

Applying my contrarian experimental methodology, these results 
told me that we needed to try creating spaces where the arrangement 

Sources: Top Left, clockwise recep-bg/iStock.com, skynesher/iStock.com, photo courtesy of Mike 
Pruner, photo courtesy of Alex Overwijk, photo courtesy of Lisa Poettcker, and photo courtesy of 
 Jamie Mitchell.
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of desks and tables was neither straight nor symmetrical and where 
chairs were placed in such a way that the room was not fronted. Our 
investigations, in this regard, consisted of two experiments, the first 
of which was to show students pictures of a classroom where desks, 
tables, and chairs were arranged in non-straight, non-symmetrical, and 
defronted fashions (see Figure 4.3). Most students reacted positively 
to these pictures. Whether students liked or disliked the pictures, 
however, all students predicted the teacher to be fun and relaxed, and 
all students thought that there would be a lot of student activity.

Figure 4.2 Orderly classroom. Figure 4.3 Defronted classroom.

We only needed 
to defront a room 

in order to also 
destraighten and 
desymmetrize it.

A second result that emerged from this experi ment 
was that we only needed to defront a room in order 
to also destraighten and desymmetrize it, as long as 
we defined defronting as ensuring that every chair in 
the room was facing a different compass direction. 
Doing so automatically ensured that there would be 
no straight or symme trical furniture placement.

Our second experiment was to actually teach in such defronted 
spaces. Using random groups and vertical non-permanent surfaces 
added further constraints to the placement of the furniture. First, 
we needed to arrange the desks and/or tables in such a fashion that 
groups of three could sit together. Second, we needed to also make 
sure there was room around the perimeter of the room for groups of 
three to have easy access to the vertical non-permanent surfaces as 
students worked, discussed, and moved around the room.

Source: Photo courtesy of Alex Overwijk.  
Used with permission.

Source: skynesher/iStock.com
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Given that most of the student activity was 
happening at the vertical surfaces, we were 
wondering how the furniture placement in 
the middle of the room would affect student 
behaviors and attitudes. I didn’t have to 
wait long. The very first room we defronted 
was a Grade 7 class that had already been 

doing vertical surfaces for a few weeks. When the students walked in, 
one of the boys immediately remarked, “Hmm. I guess that’s how it is 

going to be now.” When I caught up with him later 
in the lesson and asked him what he meant by that 
comment, he told me that the way the desks were 
placed meant that “the teacher was never going 
back to teaching the way she used to.” The furniture 
placement, coupled with recent changes in the 
teacher’s practice, communicated that changes were 
permanent. I will discuss this more in Chapter 15.

Even when we defronted classrooms wherein the teacher had made no 
other changes to their practice, students immediately commented on 
the desk placement as something indicative of other changes to come. 
And changes did come. Defronting the room had an immediate effect 
on both the students and the teacher. Students began to collaborate 
more, and teachers started talking less. It turns out that how the desks 
and tables are placed not only sends a message of what is expected, 
it changes what actually happens. From interviews with teachers, we 
knew that they placed their furniture to suit their intentions. This, it 
turns out, is not a one-way street—the placement of furniture also 
shapes the teacher’s intentions. And it shapes their actions.

I already mentioned that we noticed a marked decrease in how much 
the teacher talked when teaching in a defronted classroom. We 
also saw a decrease in how much they demonstrated things on the 
board at the front of the room. Teachers also began to circulate more 
throughout the room while they were talking and facilitating whole 
class discussion or answering student questions.

We wondered what other alterations we could make that would have 
the same power as defronting the classroom. But in fact, further 
refinements to how desks and tables were placed yielded no better 
results than the defronted classroom. That was the singularly most 
effective thing we could do in terms of room organization to induce 
student thinking.

The way the desks 
were placed meant that 
“the teacher was never 
going back to teaching 
the way she used to.”
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Figure 4.4 A teacher fields questions from a group in a defronted classroom.

What do I do about my desk? Where do I put it when 
there is no front?

Most teachers have their desk at what has been 
conventionally called the front of the class. In a 

defronted classroom, it can go anywhere. However, as part 
of the defronting process, it should be moved to another 
part of the room. Otherwise the students will continue to 
think of where it is placed as the front. Place it somewhere 
near what used to be the back, but make sure it does not block any 
vertical surfaces you may wish to use.

What do I do about my projector (or interactive white board or 
clock)? It is currently fixed at what used to be the front of the room.

There is often not much that can be done about moving these 
remnants of a fronted classroom. If you can, move it to another 

wall. Otherwise live with it. The important thing is not to reinforce 
these as the front. Don’t leave a projector (or interactive white board) 
on unless you are using it. And when it is on, make sure that, as much 
as possible, you are somewhere else in the room. That is, use your 
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position in the room to contradict the projector’s (or interactive white 
board’s) message that it is at the front of the room. If your only 
remnant of a fronted classroom is the clock, go to a discount store and 
buy three more clocks.

I teach math in a science lab where all the tables are bolted to the 
floor. How do I defront that room?

There are three elements that go into fronting a room—how 
desks or tables are arranged, where the students are seated around 

these desks or tables, and where the teacher positions him- or herself. 
Being in a classroom where tables are fixed to the floor defines only 
one of these three elements. You can still disrupt the other two by 
positioning chairs on all sides of the tables and making sure that you 
spend a lot of your time in parts of the room other than what used to 
be the front.

I share my classroom with another teacher who likes the desks to 
be in rows. How do I defront the room when they do not like that?

A willing class of students can rearrange the desks in a room in 
less than a minute. Have your students defront the room as soon 

as they come in. Just prior to turning the classroom over to the other 
teacher, have your class refront the room. Some teachers place two 
small maps of the room on the corner of each desk. The first map 
shows what the desk arrangement is in a fronted classroom, and the 
second map shows the arrangement in a defronted class. On each 
map, one desk in the arrangement is shaded in, telling the student 
who occupies that desk where it belongs in either configuration. 
Students come into class, grab a desk, and move it to its correct position.

I have big tables in my room. How do I keep students in groups 
of three when I need more students at each table?

Sometimes the size of the tables is not commensurate with your 
desired group sizes. In these cases it is better to have the students 

squished when sitting than when standing at vertical non-permanent 
surfaces. So, if you have big tables, put two groups at each. If you have 
small tables, put one group per table. This will reduce the amount of 
furniture in your room and give you more space around the perimeter 
of the room, which will be useful when we get to Chapter 10 on 
consolidation. Less furniture will also allow for the possibility of an 
empty space in your room—something that has been shown to be 
beneficial and will be discussed in Chapter 6.
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Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. Think about the way the furniture in your room is currently 
arranged. Is that for your benefit or the students’?

3. What is it you like about the way the furniture is currently 
arranged? Why do you like it?

4. Think about other arrangements that you have seen. Why 
would a teacher prefer that?
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5. In this chapter I talked about straightness and symmetry. 
What else in a classroom, and in teaching practice, might 
be governed by a desire to have things be straight and 
symmetrical? What, if anything, do you like about this? 
What message does this send to students?

6. If we think about the fact that everything we do sends a 
message to the students, what is the main message that 
students hear from your practice? Is this the message that 
you want to be sending them?

7. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
Grades K–2: Jellybeans

You have 16 jellybeans and four jars.

1. Place the jellybeans in the jars so that each jar has either 3 or 
6 jellybeans. Are there some things that are not possible?

2. Place the jellybeans such that each jar has one more than the 
jar before it. How many ways can you do this?

3. Place the jellybeans so that each jar has twice as many as the 
jar before it. Three times as many.
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Grades 3–8: Four Numbers

Select four numbers from 1 to 9 at random. Using these four numbers 
and any operations, make the values from 1 to 30.

Grades 9–12: Gold Chain

You are backpacking through Europe. You have one month (30 days) 
left until your flight home, but you have run out of money. However, 
you have a 50-link gold chain that you bought on your travels, and 
you have found a hotel that is willing to accept one link per night for 
payment of room and board. However, the manager wants payment 
every day, and they are willing to help you out by cutting links for you. 
The problem is that they want one gold link in payment for every link 
they cut. How many links will you have left when you fly home?

[Hint: Eventually you want to get the students to think about this 
problem through the idea of making change. For example, if on a 
certain day we owe two links of gold, we pay with a length of four 
links and get two single links as change.]



CHAPTER 5
HOW WE ANSWER QUESTIONS  

IN A THINKING CLASSROOM
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Much has been written about the effective use of questions from the 
teacher to direct students’ thinking (Andrews & Bandemer, 2018; NCTM, 
2014; Smith & Stein, 2018), and I will draw on some of that literature 
when I discuss the use of hints and extensions in Chapter 9. This chapter 
is more concerned with how teachers answer students’ questions and the 
effect that this has on getting students to think—or not think. By the end 
of this chapter you will have learned what types of questions students ask 
and which ones we, as teachers, should be answering.

The Issue
You may be familiar with research showing that teachers 
ask up to 400 questions a day (Vogler, 2008), but a 

more interesting question as it relates to thinking classrooms is how 
many questions teachers are answering. And one of the things that 
became immediately apparent when I was first observing classrooms 
is how much time teachers spend answering students’ questions. 
At first, I saw these answers as background noise to the central 
focus of a teacher’s planning and delivery of a lesson. But 
as I began to pay closer attention to how teachers answer 
questions, I realized that this background noise can become 
overwhelming over time. After an initial study to gauge how 
answering questions is related to student thinking, I came 
to the startling conclusion that a typical teacher will answer 
between 200 and 400 questions a day, with some answering 
as many as 600 questions.

A typical 
teacher will 

answer between 
200 and 400 

questions a day.

The Problem
The problem with this is that answering all of these questions 
is antithetical to the goal of getting students to think. In fact, 

my research on the other 13 practices was showing that practices 
that could get students to think were often being undone by teachers 
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answering every question being asked of them. 
For example, giving students a thinking task is 
pointless if we then proceed to answer all the 
students’ questions about how to solve it. Likewise, 
randomizing students into groups of three does 
not foster collaborative sense making when we as 
teachers give away the sense made through our 
own answers. Yet, answering questions is as much 
a part of being a teacher as asking questions is a 
part of being a student. And it’s a habit teachers 
find difficult to change.

Talia It’s so hard for me not to answer every question. I want 
to help them, and I just want them to like me!

So, what to do? The questions are not going to stop coming. So, what 
do we do instead of answering them? The answer lies not in whether 
or not we answer students’ questions, but which questions we answer. 
As it turns out, students only ask three types of questions: proximity 
questions, stop-thinking questions, and keep-thinking questions.

Practices that could get 
students to think were 

often being undone 
by teachers answering 
every question being 

asked of them.

In many instances 
where I saw proximity 

questions being asked, 
immediate follow-

up revealed that the 
information gained from 

the answer was not 
being used at all.

Proximity Questions

Proximity questions are the questions students 
ask when the teacher is close by—in proximity. 
On the surface, these questions are no different 
than questions asked in the other two categories. 
What is different is that the student does not put 
up their hand or walk across the room to ask it. 
From the studenting research discussed in the 
introduction, we learned that in many cases, 
students ask these proximity questions more for 
the sake of conforming to the role of student 
than for the sake of getting an answer. In many 



85CHAPTER FIVE | HOW WE ANSWER QUESTIONS IN A THINKING CLASSROOM

instances where I saw proximity questions being asked, immediate 
follow-up revealed that the information gained from the answer 
was not being used at all. In fact, in most cases proximity questions 
consisted of queries about things that students had either already 
figured out or made decisions or assumptions about. They simply 
asked the question because it was a habitual studently thing to do 
when the teacher happened to be standing nearby.

From role theory (Horowitz, 1967), we know that the drive to 
conform to socially defined roles can be very strong, even if totally 
subconscious. In a classroom, the dominant roles are that of student 
and that of teacher. Asking a question, one of the most studently 
things that a student can do, cements their role as student in the eyes 
of their teacher. Conversely, answering a question is one of the most 
teacherly things a teacher can do, thereby solidifying their role. The 
drive to conform to these roles is most obvious in moments when a 
teacher catches a student doing something they should not be doing. 
See if this sounds familiar:

It’s toward the end of the lesson, and you have given 
your students some seat work to complete before 
they leave. You notice that one of the girls near the 
back of the room is paying an awful lot of attention 
to something in her hands. You suspect she is doing 
something on her phone, but you can’t quite see what 

Figure 5.1 A student asks a proximity question as the teacher moves 
through the classroom.
Source: Wavebreakmedia/iStock.com
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it is, as her textbook is blocking your view. So, you 
walk up the aisle toward her to see what is going on. 
The girl notices your approach and makes a few brief 
movements with her hands. As you get closer to her 
you can finally see over her textbook and you notice 
her phone, set to a calculator app, lying on her desk. 
Now that you are there, she asks you, “So, for Question 
11, are we supposed to find all the answers, or just one 
answer?” You respond to her that she is supposed to 
find all the answers and walk away satisfied that not 
only is she on task, she is ahead of most of the students 
in the class.

From my position at the back of the classroom, however, I can see that 
your first instinct was correct—she was on her phone. And not on 
the calculator app that you saw, but communicating with her friends 
through a social media application. As she saw you approach, she 
quickly switched over to the calculator app—a perfect subterfuge. She 
has completely managed to cover her tracks, and she knows, as do 
you, that you would be hard pressed to prove otherwise. So why the 
question? She had gotten away clean.

She asked the question because, whether you knew it or not, she knew 
she was out of position—acting outside of her role. The question, the 
answer to which she did not need, was the quickest way to get back 
into her socially defined role of student. By answering it, you not only 
reaffirmed your role as teacher, but also acknowledged that she was 
in her role as student.

This is not to say that there were not instances of students asking 
genuine questions when the teacher was close by. This did happen. 
And when it did, follow-up with the teacher often revealed that the 
students who asked the proximity questions were either shy or had 
very good work habits. In the former case, these were students who 
did not want to draw attention to themselves by raising their hand or 
getting out of their seats to approach the teacher. Instead, they waited 
until the teacher was close by and then, very quietly, asked their 
questions. Teachers seemed to have a sense of this and were drawn 
to these students in anticipation of their questions, either from prior 
experience or very subtle signals from these students. In the latter 
case, rather than take the time to put up their hand and wait for the 
teacher to come to them, or walk across the room and wait in a line of 
students with questions, these students chose to save their questions 
for when the teacher was close by. In the meantime, they proceeded 
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with the rest of their work. Regardless, the number of students with 
legitimate proximity questions paled in comparison to the number 
of proximity questions asked for the purpose of establishing, or 
reestablishing, roles.

Stop-Thinking Questions

The second type of question that students ask is called a stop-thinking 
question. These questions can take the form of “Do we have to learn 
this?” or “Is this going to be on the test?” More often, however, they 
take varying forms of “Is this right?” The question could be about an 
answer they have come up with, their progress on a thinking task, or 
the way in which they are following your instructions. Regardless, 
these questions are motivated by the reality that, for students, 
thinking is difficult, and it’s hard to decide for themselves that what 
they are doing is correct. If they can just get you to do that for them, 
their life would be so much easier. So students ask this question with 
the hope that you will answer it, and they can stop thinking.

Keep-Thinking Questions

Keep-thinking questions, on the other hand, are asked by 
students so they can continue to engage with the task at 
hand. These are often clarification questions or questions 
about extensions the students want to pursue. Students 
who ask these questions are motivated to keep going—
keep working, keep thinking.

Can we get the next one [question]?
When you say numbers that add to 25, do we have to 
stick to whole numbers?
We want to try to solve this for the negative case as 
well. Is that ok?

When we get to Chapter 9, we will see that students will eventually 
stop asking you these types of questions as they gain confidence in 
their thinking and start creating extensions for themselves.
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Toward a  
Thinking Classroom

It turns out that of the 200–400 questions teachers answer 
in a day, 90% are some combination of stop-thinking and 
proximity questions. How many of these are proximity 
questions depends on how much the teacher circulates 
around the room during a lesson. Teachers who spend 
a lot of time circulating receive many more proximity 
questions than those who circulate very little or not 
at all. Regardless, answering these proximity or stop-
thinking questions is antithetical to the building of a 

thinking classroom. In the best case, the answer would be redundant. 
In the worst case it would shut down thinking.

The only questions that should be answered in a thinking classroom 
are the small percentage (10%) that are keep-thinking questions. But 
this raises two new problems—how to quickly discern the types of 
questions being asked and how not to answer 90% of them?

The first of these issues turned out not to be a problem at all. The 
teachers I was working with quickly learned to discern a keep-thinking 
question from other types of questions. One of the things that helped 
with this was the realization that almost all questions asked in the 
first few minutes of a thinking task are either proximity questions 
or stop-thinking questions—neither of which needs to be answered. 
Although the questions being asked early on in a task usually appear 
as clarification questions, in truth they are often being asked to avoid 
having to do the hard work of discerning what is being asked and 
making decisions about things that are perceived to be ambiguous.

Once the task is up and running, it is equally easy to discern the 
nature of the questions being asked if you just keep in mind what the 
downstream effect of you answering the question will be. Are they 
asking for more activity or less, more work or less, more thinking 
or less? But, watch out. In an environment in which you are only 
answering certain types of questions, students get very inventive in 
how they formulate their questions, often forming statements with an 
accompanying [implied question] and lifting their eyebrows.

We are thinking this is correct! [What do you think?]
This is correct! [Right?]
I think we are going the right way! [Right?]

Answering these 
proximity or stop-
thinking questions 

is antithetical to 
the building of a 

thinking classroom.
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Don’t be fooled by these pseudostatements. If their tone is inviting 
a response from you, they are really asking a question—and by the 
nature of the disguise, it is almost always a stop-thinking question. 
Focusing on the consequences of responding to their statement 
quickly helps you discern the intention behind the question. Are they 
trying to get you to help them to stop or keep thinking? If in doubt, 
assume it is to get you to help them stop thinking.

Students can be very 
persistent in their 

efforts to get you to 
help them reduce 

their workload, and 
how you respond to 

this is important.

What turned out to be more difficult was figuring out 
what to do in place of answering a proximity or stop-
thinking question. Students can be very persistent 
in their efforts to get you to help them reduce their 
workload, and how you respond to this is important.

Working with a team of eight teachers, we came up 
with a list of 10 things to say in response to a proximity 
or stop-thinking question.

1. Isn’t that interesting?

2. Can you find something else?

3. Can you show me how you did that?

4. Is that always true?

5. Why do you think that is?

Figure 5.2 Elementary students ask questions as teachers approach 
their work stations.
Source: Photo courtesy of Sheri Stashick. Used with permission.
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6. Are you sure?

7. Does that make sense?

8. Why don’t you try something else?

9. Why don’t you try another one?

10. Are you asking me or telling me?

Each of these suggested responses is a variation of answering a 
question with a question. Some of the teachers I was working with 
became quite proficient at using this list, and for them, these responses 
were effective at redirecting proximity and stop-thinking questions. 
But these teachers were among the minority. For the majority of 
teachers, answering a question with a question became a slippery 
slope into revealing more than what they initially intended. Consider 
the following interaction.

Teacher Why don’t you try something else?

Students Like what?

Teacher Maybe you need to consider the cases where x 
is negative.

Student You mean like this?

Teacher Right!

What we found was that answering a question with a question (and only 
a question) was only effective when it was immediately followed by the 
teacher walking away from the students, with no other statements or 
suggestions being made. In fact, this was so clear that we decided to try 
this strategy on its own. We would just walk away. This turned out to be 
infuriating to students and did cause some negative backlash. But after 
two weeks we also noticed it caused a sharp decrease in the number 
of proximity or stop-thinking questions being asked by students—in 
some cases reducing the number to fewer than 30 questions a day. 
As students began to realize that their questions weren’t going to be 
answered, they stopped asking them . . . except in the primary grades.

If a six-year-old asks a question and it is not answered, they ask it 
again. If it is still not answered, they ask it again. And if it is still not 
answered they do something that a 16-year-old does not. They reach 
out and touch the teacher—tap them on the arm or pull on their 
clothing. And if the teacher walks away, they follow. I have multiple 
videos of kindergarten and Grade 1 teachers walking around the 
room with a row of little ducklings following them. As soon as the 
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teacher stops walking, they are immediately surrounded by these little 
ducklings tapping and tugging at them.

These hilarious episodes of primary teachers trying 
to not answer students’ questions by walking away 
prompted us to explore some nuances of this strategy at 
all grades. For students there is a big difference between 
having their question heard and not answered, and 
having their question not heard. The primary students 
were reacting to the latter of these. They assumed that 
their questions had not been heard. No one likes to be 
ignored. So, we made a modification to the walking 
away strategy. Instead of walking away when a proximity or stop-
thinking question is being asked, we would instead look at the student 
and smile as they asked their question. Then we would walk away.

This turned out to have a huge effect on the perceptions of students 
at all grades. Instead of feeling ignored, they now knew that they 
had been heard and that the teacher’s decision to not answer them 
was deliberate. Many students took this to mean that they needed to 
do more work. Over time, the students began to see the smile and 
walk away as a sign that the teacher had confidence in their ability to 
resolve the question on their own. There were still a few students who 
were frustrated by these encounters. But they were thinking more—
or no longer having the teacher do their thinking for them.

When coupled with the aforementioned building thinking class-
room practices, students perceive the smile and walk away as you 
having confidence in their group, and the room as a whole, to resolve 
their question. This is not to say that students shift their questions 
from the teacher to their groupmates. Students do not ask proximity 
questions of their peers—there is no need to establish their role as 
student within the group. They do still ask their groupmates if “this is 
right,” however. But because their groupmates do not have the same 
authority as a teacher, these questions are asked and answered with a 
level of tentativeness that keeps the thinking going.

What do we do when a student, or a group of students, insists 
that I answer a stop-thinking question?

For students there 
is a big difference 
between having 

their question heard 
and not answered, 

and having their 
question not heard.
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This happens most often in the context of an Is this right? 
question. The easiest way to deal with this is to call it like it is—

“I’m not going to answer that question”. Then tell them why—  
“Me telling you that it is right is worth almost nothing. If you 
can tell me that it is right, however, that is worth everything.” 
And, then tell them that you have confidence in them—“And 
I believe that you will be able to tell me if this is the right 
answer. So, keep going.” In some instances, you may wish to 
couple this with a hint (see Chapter 9).

How do I tell the difference between a keep-thinking question that 
is asked as I am moving round the room and a proximity question?

The key difference between these types of questions has to do 
with the activity of the student, or group of students, at the time 

the question is asked. If the students are busy working away at 
whatever task is at hand, any questions they ask tend to be proximity 
questions—“For Question 3, were we supposed to find all the 
answers?” or “Are we doing this right?” Keep-thinking questions, on 
the other hand, tend to come when students are at an impasse and 
need something from you to move forward. In some cases, this is a 
request for a hint (see Chapter 9)—“We’re having trouble here. Were 
we supposed to do this for all the possible sizes?”—or an extension—
“Are we supposed to now look at the general case?”

Should I tell my class about the three types of questions they ask 
and that I am no longer going to answer proximity and stop-

thinking questions?

As it turns out, this is the first practice where we experimented with 
talking to students about what we were doing. When done correctly, 

two interesting things happen. The first is that students started to self-
regulate the types of questions they were asking. In this regard, we saw a 
huge decline in proximity and stop-thinking question, coupled with a 
small uptick in the number of keep-thinking questions being asked. The 
second thing that happened was that students started using the language 
of the three types of questions to moderate their peers—“Dude! She’s not 
going to answer that. That’s a stop-thinking question.”

The challenge was doing it correctly. In this regard, we learned that 
talking to students about the practice before initiating it almost 
always resulted in challenges when the implementation began. From 
interviews with students, we learned that students perceive pretalks 
to mean that the teacher is asking them to behave themselves during 
the implementation. By extension, this meant that the teacher was 
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asking their permission to make this change, and in the minds of 
some students, this gives them the power to decide whether this is 
something they want or not. On the other hand, talking to students 
about the practice after two weeks of not answering proximity and 
stop-thinking questions, coupled with a lot of smiling and walking 
away, was met with very positive reactions—“So that’s what is going 
on!” This was not perceived as asking permission, but rather an 
explanation for something that had already become an implicit part of 
their classroom norms. Students also appreciated the peek behind the 
curtain of teaching—“It’s cool that he told us that! It’s like he is really 
thinking about what he is doing.”

This distinction between pre- and post-
implementation discussion played out the same 
every time we experimented with talking to the 
students about why we were doing what we were 
doing—irrespective of the practice we were talking 
about. Although many of the same things were 
said in both instances, the students perceived 
preimplementation conversation as asking 
permission and postimplementation discussing as 
inviting them into the reasons behind the practice.

I can see how smiling and walking away, although infuriating for 
students at first, can become a good way to avoid accidentally 

answering a proximity or stop-thinking question, and thereby a good 
way to get students to keep thinking. But does it work for all students?

Yes and no. It works in that you are not letting them stop thinking. It 
doesn’t work for all students in the sense that there are students who 

cannot get past the fact that you have not answered their question. This 
may be because they are insecure about their own abilities, have learned 
helplessness, or have a spectrum disorder—such as obsessive compulsive 
disorder—that does not allow them to move forward without resolution. 
Alternatively, you may have students who become incensed at your 
deliberate disregard for their question. After all, they have a lifetime of 
experiences with teachers answering their questions. Or, 
it may be a combination of these factors. Regardless, you 
need to read the situation and know when a nod, a wink, 
or an encouraging remark—“I have complete confidence 
that you can figure this out”—is needed. Keep in mind, 
however, that when you open your mouth, you may be 
overcome with an almost undeniable desire to answer 
their question. It is in our nature as teachers.

Students perceived 
preimplementation 

conversation as 
asking permission and 

postimplementation 
discussing as inviting 
them into the reasons 
behind the practice.

You need to read the 
situation and know 
when a nod, a wink, 
or an encouraging 
remark is needed.
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Although we had great success with smiling and walking away in K–2 
classrooms, there were some settings where several students didn’t 
know how to process the signals that these actions were meant to 
send. In these instances, teachers would smile, say a few encouraging 
words, and then walk away. Over time, they could stop with the 
encouraging words and just smile and walk away.

What is important, is that you do not answer proximity or stop-
thinking questions and that you read the situation so as to be able to 
give the best response when such questions are asked.

How do parents react to the teacher not answering questions?

The answer to this depends on who tells them. If you leave it to the 
students to tell their parents that you are not answering their questions, 

I think you can imagine what their reaction will be. Students, at the best of 
times, are not great at communicating the nuances of what happens in the 
classroom. Couple this with a parent filtering what they hear from their 
child through their own experiences as a student, and you are likely to get 
an e-mail or a phone call. If, however, parents hear from you that you are 
doing everything to encourage student thinking and that you will be 
supporting that thinking through how you selectively answer and don’t 
answer student questions, the response tends to be much more amicable.

I have been implementing thinking classrooms for a while, and 
there is no way I am getting 200–400 questions a day. What kinds 

of classrooms were these numbers coming from?

The 200–400 questions a day data comes from classrooms where 
none of the thinking classroom practices are being implemented. 

As you begin to implement these practices, these numbers dramatically 
decrease, in some cases going down to close to zero questions asked 
in a single period.

So, smiling and walking away is the strategy after the question 
has been asked. Are there any strategies that can be used before 

the question is asked to prevent it being asked at all?

There are three strategies that we have played with—the first of 
which involves strategically reducing proximity. The first three to 

four minutes after the first task is given is, by far, the period of time in 
a thinking classroom when the greatest number of questions is asked. 
During these three to four minutes, stay in the very center of the 
room, as far away from the students as possible. By distancing yourself 
from the students, you reduce proximity questions.
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The second method is to not answer any questions asked by an 
individual student. Individual students ask their group members 
questions; groups ask the teacher questions. So, if a student approaches 
you with a question, respond with, “What did your group members 
give as an answer?” or “Did you ask your group?” If the answer is that 
the group doesn’t know, then follow the student back to the group 
to hear exactly what the question is. This is not to say that you will 
answer their question. You might give a hint, or you might just smile 
and walk away.

The third method is to lead with your own questions when you 
approach a group. “What are you doing here [pointing]?”, “Can 
someone explain what is happening here?”, “What do you know so 
far?” By leading with a question you are controlling the conversation, 
and it means that if you give encouragement or a hint or a smile, you 
are not doing so in reaction to one of their questions.

Summary
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Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. The introduction talked about institutional norms being 
a potential source of student disengagement and lack of 
thinking in the classroom. This chapter talks about the way 
we, as teachers, answer questions as contributing to students’ 
not thinking. In what other ways do our interactions with 
students reduce or remove their need to think?

3. Many of the practices for building thinking classrooms 
discussed to this point are ways in which we can create 
environments that get students to think. The practice 
discussed in this chapter, in many ways, is the opposite of this. 
In this chapter, you learned about ways to avoid doing things 
that stop thinking. What other practices stop thinking?

4. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
The following thinking tasks have been shown to generate a lot of 
student questions. Therefore, using these is a great way to practice not 
answering proximity and stop-thinking questions.

Grades K–4: Ice Cream Cones

The Ice Dream ice cream shop has 10 flavors of ice cream. How many 
different two-scoop ice cream cones can you make? What if there 
were 11 flavors? What if there were 12 flavors? What if it were 20 
flavors? What if each cone had at most three scoops?
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Grades 5–8: Palindromes

A palindrome is something that is the same forward as backwards—
like mom, dad, race car, I prefer pi, et cetera. Numbers can also be 
palindromes—like 141, 88, 1221, et cetera. Now, consider the number 
75. 75 is not a palindrome. So, reverse it and add it to itself: 75 + 57 = 
132. 132 is also not a palindrome, so do it again: 132 + 231 = 363. 363 is 
a palindrome. So, we stop, and we say that 75 is a depth-2 palindrome 
(because I had to do the process twice to get to a palindrome). Find 
the palindrome depth of all two-digit numbers.

Grades 9–12: Wine Chest

Mr. Snooty loves red wine. So much so that he drinks one bottle of 
wine a day. But he is very particular about his wine. First, it has to be 
the right type of wine. Second, it has to be the right temperature. And 
third, it cannot have been exposed to light more than five times. To 
make sure it is the right type of wine, Mr. Snooty goes to his favorite 
wine store, which is very far from home. To make sure that the wine 
is at the right temperature and not exposed to light, Mr. Snooty built 
two temperature-controlled wine chests in his house—one much 
bigger than the other. How often does Mr. Snooty have to go to his 
favorite wine store? Mr. Patooty shops at the same store as Mr. Snooty, 
likes his wine at a certain temperature, but will not drink wine that 
has been exposed to light more than ten times. How often does Mr. 
Patooty have to go to his favorite wine store?



CHAPTER 6
WHEN, WHERE, AND HOW TASKS 

ARE GIVEN IN A THINKING  

CLASSROOM
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In Chapter 1 you learned about the qualities of tasks for 
thinking classrooms and how these qualities are important 
to initiating and maintaining thinking. Having such tasks, 
although necessary for the building of thinking classrooms, 
is not enough. What you do with them is far more important. 
In Chapters 2 and 3 you learned about the research that 
showed that these tasks come to life when students work 
on them in random groups on vertical non-permanent 
surfaces. In this chapter we will look at the research results 
that show that the more subtle practices of when, where, 
and how the tasks are given is as important as the quality of 
the task itself.

The Issue
The internet is full of resources of rich tasks. Whether 
you look through the archives of NRICH (nrich.maths.

org), NCTM Illuminations (illuminations.nctm.org), or simply type 
problem of the day into your favorite search engine, you will find 
endless lists of potentially good thinking tasks. Yet, one of the most 
frequently asked questions I get is still, “Where can I get good tasks?” 
Where is the disconnect? With the abundance of good tasks, why 
would people ask me this question?

My suspicion is that this question is actually a proxy for deeper, more 
imperative, questions like “Where can I get good tasks that help me 
teach the curriculum?” or “Where can I get good tasks that engage 
my students?” The answer to the first question was briefly discussed 
in Chapter 1 and will continue to be elaborated on in Chapter 9. The 
answer to the second question is fundamentally what this entire book 
is about—and the answer lies not in the task, but what we do with it.

The Problem
Consider the palindrome task given at the end of Chapter 5. 
By all accounts that is a great task for getting students to think. 

We have used it in hundreds of Grade 5–12 classrooms, and, almost 
without fail, it generates extended periods of deep mathematical 
thinking. And now you too have this amazingly rich thinking task. 
The question is, what are you going to do with it? Assuming that you 
want to use it with your students, how are you going to give it to them?

The more subtle 
practices of 

when, where, 
and how the 

tasks are given is 
as important as 

the quality of the 
task itself.
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In all the research we have done, out of all of the hundreds of 
microexperiments we ran, and from the hundreds of interviews we 
conducted, this one question was the thing that teachers thought 
the least about. How are you going to give the task? As it turns out, 
teachers tend to give tasks in one of three ways—they project it or 
write it on a vertical surface, they give it as a handout, or they assign 
it from a textbook or workbook. Of these, which is the worst? Which 
method, when the exact same task is used, generates less thinking 
than any other way? Even though this is the part of their practice 
that teachers think the least about, you likely know the answer. We 
all know the answer—the textbook/workbook generates less thinking 
than the other two methods.

Students, especially students above Grade 7, have been 
socialized to believe that questions are assigned from 
the textbook or workbook after they have first been 
shown how to do them. This is not an unreasonable 
assumption on their part, as questions are typically 
assigned from books near the end of the lesson—after 
a lesson full of worked examples. This assumption, 
however, interferes with the way they engage with the 
task. Rather than approaching questions in the book 
as something to think about, they approach them as 
something to be answered by mimicking the examples 
from the lesson and their notes. And when this does 

not work, rather than think about the question, they put up their 
hand and ask for help on how to do it. This same baggage does not 
accompany a task that is projected or written on the board or given as 
a handout—even if it is the exact same task.

How we give the tasks matters, and it turns out to matter a great deal. 
The same is true of when we give the task, and even where in the room 
we give the task. And like the textbook/workbook example, how we 
naturally do it, how we have been taught to do it, often produced the 
lowest levels of thinking in our research.

Students have been 
socialized to believe 

that questions are 
assigned from 
the textbook or 
workbook after 
they have first 

been shown how 
to do them.
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Toward a  
Thinking Classroom

Before we get to discussing how to give a task, you will first see the 
results of when and where to give the task.

When to Give the Task

One of the earliest results from the research was 
that the same task given either in the middle of 
the lesson or near the end of the lesson produced 
much worse results than if it was given right at 
the beginning of the lesson. There are two main 
reasons for this—the first of which has to do 
with the students. As discussed in the previous 
chapter, students prefer to occupy lower energy 
states. So, if a lesson begins with the low-energy 
state of passively receiving knowledge in the form 
of a lecture or taking notes, it is much harder to 
then raise their energy level and get them to start 
thinking. This was obvious in the data through 
students’ complaints, questions, and slow starts whenever we 
gave them thinking tasks in the middle or near the end of 
the lesson. A class given these same tasks at the beginning of 
the lesson came to it with energy, enthusiasm, determination, 
and a greater sense of self-reliance. Even when we ran tasks on 
the same students at different points of the lesson, we saw a huge 
difference between a task given early versus late in a lesson. It wasn’t 
about the task, and it wasn’t about the students. It was the timing of 
the task that made a difference.

The second reason for the shift in engagement from the beginning of 
the lesson to the middle or end of the lesson was about the teachers. 
From our data it became clear that the longer the lesson progressed 
before a thinking task was given, the more likely the teacher would 
begin to preteach the task in some way. Sometimes this was explicit 
with parallel worked examples. Sometimes it was more subtle with 
emphasis on useful representation, organization, and strategies. 
Interviews with teachers after such events were mirthful as they 
laughed at themselves.

If a lesson begins with 
the low-energy state 
of passively receiving 

knowledge in the form 
of a lecture or taking 

notes, it is much harder 
to then raise their energy 

level and get them to 
start thinking.
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Samantha Ha. I just can’t help it, I guess.

Stanley Humph. I guess that’s how we’re wired.

The idea of preparing our students for what is 
to come is so engrained in the fabric of teaching 
that, even when we know it is counterproductive 
to thinking, it is difficult to stop.

This preteaching, coupled with the initial passive 
positioning of the students, undermines the 
effectiveness of a task to generate thinking in an 
almost linear fashion (see Figure 6.1). The further 
into the lesson the teacher waited before giving 
the task, the less effective it became. Pushing this 

line of research further, we determined that the teacher has three to 
five minutes from the beginning of the lesson to give the task before 
this deterioration begins. Interestingly, what defines the beginning of 
the lesson, in this regard, is not when the bell rings, but when the 
teacher begins to address the class as a whole.

Figure 6.1 Thinking achieved as a function of when the task is given.

The idea of preparing 
our students for what is 
to come is so engrained 
in the fabric of teaching 

that, even when we know 
it is counterproductive 

to thinking, it is 
difficult to stop.
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You may be thinking that three to five minutes is doable for review 
lessons. But when a lesson begins with the introduction of new 
content—content that is needed to do the first task—I would wager 
you’re thinking this is too little time. I can assure you that it is not, but 
you are going to have to wait until Chapter 9 to find out why not. In 
the meantime, just know that the longer you talk, and the longer they 
listen, the less likely you are going to be able to get them to think.

Where to Give the Task

Student passivity is accentuated not only by how long we talk before 
giving them a task. Where the students are located while we are 
talking to them also has an impact on the degree to which they are 
put into an active or passive state. For example, having students 
sitting in the desks, while the teacher talks, creates a low-energy and 
passive environment for students. In comparison, having students 
stand, loosely clustered around the teacher, creates a higher-energy 
and active environment for the students. This was confirmed in the 
data. If students were left in the desks in the lead-up to being given a 
thinking task, they were much slower to start and had more proximity 
and stop-thinking questions. In contrast, when the students stood 
and gathered around the teacher, they were quicker to get going on 
the task and were less likely to ask questions.

Figure 6.2 A teacher gives his students the task among standing 
students.
Source: Photo courtesy of Judy Larsen. Used with permission.
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From a physiological perspective, this makes sense. 
Standing versus sitting requires a more active use 
of core muscles and increases blood flow. From 
a psychological perspective, sitting in a desk is 
powerfully associated with direct instruction, passive 
learning, and non-thinking behavior. This association 
is not only embedded within the institutional norms 
of school but is also part of the lived experience of 

students as young as Grade 2 or 3. This was confirmed in interviews 
wherein we showed students pictures of students listening to the 
teacher while sitting in desks, sitting on the floor, and standing 
around the teacher. When asked what they thought class was like for 
each picture, almost every student indicated a more positive affective 
response to the pictures where students were not sitting in desks. 
Even a picture of some students sitting on lab tables as they listened 
solicited a more positive response than the picture of students sitting 
in desks. Deeper probing revealed that students’ positive attitudes 
were associated with their sense of engaging teaching.

In a more simplistic study, we documented how many high school 
students were looking at their cell phones while sitting versus standing 
while listening to the teacher. The results were remarkable. In the case 
of sitting, upwards of 50% of students looked at their cell phones at 
least once in a five-minute interval. For the students standing, that 
number dropped to less than 10%. This likely has something to 
do with the sense of anonymity discussed in Chapter 3, but it also 
has to do with the degree to which students are engaged. Whereas 
disengaged students look for distraction, engaged students are not 
distracted.

Taking these influences together, it was clear that the three to five 
minutes that a teacher has before sending students off to do the first 
thinking task are much better spent talking to the students while they 
are standing in loose formation around them.

How to Give the Task

As mentioned, giving the task through the 
medium of the textbook or workbook came with 
a lot of baggage and produced the least amount 
of thinking and greatest amount of proximity and 
stop-thinking questions. Incidentally, giving the 
task in the form of a worksheet also produced very 

Sitting in a desk is 
powerfully associated 
with direct instruction, 
passive learning, and 

non-thinking behavior.

Nothing came close to 
being as effective as 

giving the task verbally.
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poor results, as it was associated much more with getting done than 
with thinking. Of the three most common ways teachers give a task, 
that left only projecting or writing the task on a vertical surface. In 
our experiments with the different mediums for giving tasks, this was 
the best option—or rather, it was the least bad option. At least writing 
on the board was something that worked well with having students 
standing in loose formation around the teacher. However, writing on 
a vertical surface was far less effective than what turned out to be 
best—giving the task verbally.

This was a shocking result. Not only does it go against 
decades of norms, it also goes against teachers’ instincts. 
However, before we get into the details of the results, 
some clarification is needed as to what is meant by 
verbal in this context. Whereas the essence of the task 
is given verbally, the details of the task—quantities, 
measurements, geometric shapes, data, long algebraic 
expressions, et cetera—are written on the board as the teacher speaks. 
Verbal instructions are not meant to be about the students having 
to remember details, it is about having them hear the nature of the 
question. Likewise, verbal instructions are not about reading out a 
task verbatim. Rather, they are about unwinding the task through 
narrative, discussion, dialogue, and potentially working through 
a model of what is being asked with the students. So, for example, 
rather than just reading out the palindrome task as written in the end 
of Chapter 5, the teacher would gather the students near a vertical 
non-permanent surface and go through something resembling the 
following script.

Teacher Does anyone know what a palindrome is?

Class A word that is the same forward as backwards.

Teacher Can you give me an example?

Class Mom, dad, Hannah, race car.

Teacher Ok. Good! Can someone give me a number that is a 
palindrome?

Class 1221, 25452, …

Teacher What about 99? Or 8? Ok. Someone give me a two-
digit number that is not a palindrome.

Class 14.

Teacher Ok. 14 is not a palindrome. So, what I am going 
to do is take 14 and add it to its reverse. 14 + 41 

Verbal instructions 
are not about 
reading out a 
task verbatim.



106 BUILDING THINKING CLASSROOMS IN MATHEMATICS

[teacher writing on the board], which is 55. Is 55 a 
palindrome?

Class Yes.

Teacher Yes, it is. So, I stop. What if I start with 48?

Class 48 + 84 = 132 [teacher writing on board].

Teacher Is 132 a palindrome?

Class No it’s not.

Teacher No it isn’t. So, I do it again. 132 + 231 = 363 [teacher 
writing on the board]. 363 is a palindrome so I stop.

Teacher So, when we started with 14, we needed to reverse 
and add once before we got a palindrome. Therefore, 
14 is called a depth-1 palindrome. For 48, we had to 
do it twice before we got a palindrome. Therefore, 
48 is called a depth-2 palindrome.

Teacher Your task is to come up with the depth of all two-
digit numbers.

 [Teacher forms random groups.]

Of course, the script may not unfold exactly this way, but with some 
prodding and pulling you will be able to recreate a close approximation. 
There are three things to notice in this dialogue.

1. The task is not given until the groundwork has been 
presented.

2. The groundwork in no way reduces the thinking that the 
students will have to do.

3. If a student walks into class late and looks at the board, they 
will have no clue what the task is.

What is on the board is meaningless without the accompanying verbal 
dialogue and instructions. This turned out to be the definition of what 
separated verbally given tasks from textually given tasks—the textual 
residue of giving the task is not enough to discern what the task is. Yet, 
the textual residue is important. Not only does it reduce the cognitive 
load of trying to remember details, but it also provides visual cues to go 
with the verbal instructions and to refer back to as an anchor.

I imagine that you have loads of what-if and yeah-but questions right 
now. We’ll get to those at the end of the chapter. But first let’s look 
at some of the research results of student thinking when tasks were 
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given verbally. One of the tasks I used in this part of the research is 
the tax collector task:

I have 12 envelopes, numbered 1 to 12. Each contains a 
number of dollars equivalent to the number on it. The 
game starts with you taking one of the envelopes—the 
money inside of which is yours to keep. The tax collector 
will then take all of the remaining envelopes whose 
number is a factor of the envelope you took. The tax 
collector must be able to take at least one envelope 
every turn. Play continues until you can no longer take 
an envelope, at which point the tax collector will take 
any remaining envelopes. What is the most amount of 
money that you can get?
Source: Adapted from Diane Resek task “The Tax Collector” (2007).

This is an amazingly rich task that can be used with students as young 
as Grade 4. In the research, we compared student thinking on this 
task given textually, as above, with their thinking when the task was 
given verbally, with students standing around their teacher, according 
to the following script.

Teacher So, these are 12 envelopes, each one with some 
money in it. [Teacher draws 12 rectangles on 
the board and writes $1, $2, $3, etc. inside each 
rectangle.] This is your money. I am just holding it 
for you. But, you can have any of these envelopes 
whenever you want. You just have to ask for it. So, 
which one do you want first?

Students The $12.

Teacher OK. There you go. [Teacher pretends to hand an 
envelope to a student and then circles the $12 
envelope on the board.] This envelope is now gone.

Teacher Right [snapping their fingers]. I forgot to tell you 
that we have to pay taxes on this money. And 
because you took the $12, the tax collector will take 
the $1, the $2, the $3, the $4, and the $6 envelopes 
[teacher crossing out the envelopes as they say 
these numbers]. Why does the tax collector take 
these envelopes?
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Students They are the factors of 12 [or the numbers that 
divide into 12 or go into 12].

Teacher Right. The tax collector takes the factors of 
whatever envelope you took. Ok, so which envelope 
do you want next?

Students [Laughing] The $11.

Teacher OK [snapping their fingers]. But I forgot to mention 
that the tax collector always wants some taxes. So, 
when you choose an envelope there must always be 
at least one envelope for the tax collector to take—
one factor for the tax collector to take. So, can you 
take the $11?

Students No. there are no factors of $11 left.

Teacher OK. So, which envelope can you take?

Students The $10.

Teacher OK. You take the $10. [Teacher pretends to hand 
an envelope to a student and then circles the 
$10 envelope on the board.] What does the tax 
collector take?

Students The $5 [teacher crosses out the $5].

Teacher OK. What next?

Students Nothing. There is nothing else we can take.

Teacher OK. Now, the tax collector is very kind and does not 
want to see anything go to waste, so they will take 
the rest of the envelopes. [Teacher crosses out the 
$7, $8, $9, and $11.]

Teacher So, you got $22 in total. That is NOT good. Your job is 
to do better than $22.

 [Teacher forms random groups.]
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The narrative and verbal form of the tax collector task contains all 
of the elements of the text of the original task, but it also adheres to 
the three characteristics previously highlighted—the task is not given 
until the groundwork is established, the laying of the groundwork 
does not diminish the thinking required, and what is written on the 
board is incomprehensible to anyone who has not heard the verbal 
component of the task. This particular task also highlights a fourth 
characteristic that is present in some tasks—the constraints of the task 
emerge out of, and after, actions have been taken. So, the idea that 
the tax collector takes the factors is revealed only after the students 
have selected their first envelope. The idea that the tax collector must 
always get at least one envelope is revealed after the students try to 
take an envelope without factors.

These two very different presentations of the tax collector 
task—textual and verbal—gave us a context in which to 
compare the differences in students’ behaviors when they 
work on a task that is given textually versus verbally. One 
of the big differences we observed was the time it takes 
groups to get to the mathematics inherent in the task. For 
example, when tax collector is given verbally as above, we 
hear groups talking about starting with a prime number in the first 
60 seconds of them working on the task. The same utterances are not 
heard for 10–12 minutes when the task is given textually. This is a 
huge difference.

When we analyzed what was happening in those first 10–12 minutes, 
some common patterns emerged:

1. The students spent a fair bit of time silently reading the 
task—or pretending to read the task. When they finally 
began to discuss the task with each other, they started 
by talking about the words—“What does it mean by 
the factors?”

2. They talked about constraints—“Does the tax collector take 
all the factors or just one?”

3. They tried to solve the task while simultaneously rereading 
and renegotiating what the rules presented in the text were.

Each of these things was seen to be very challenging, and many of the 
students quit. Those who did not quit then started talking about the 
mathematics in the task, and that is when we observed them, finally, 
starting to talk about prime numbers, squares of prime numbers, the 
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number of factors, et cetera. On the other hand, when we observed 
students who received the task verbally, they began by talking about 
the mathematics. Somehow, the posing of the task verbally cut 
through all of the words and positioned the task in the minds of the 
students in such a way that they could immediately start thinking 
about the mathematics.

It would be natural to assume that this is because the narrative 
dispenses with the reading, negotiating the meaning of the words, 
and the discussion of the meaning of the constraints. And this is true, 
of course. But what is interesting is that the same differences were 
observed in tasks that require no modeling of the task on the board.

Another major difference between how students work on textual 
versus verbal tasks is the number of questions asked of the teacher. 
When the task is given textually, students ask lots of questions, 
primarily during the phases where they are reading, discussing 
words, and discussing constraints. If I go back to the story of Jane 
in the introduction, this was one of the first observations I made—
Jane was running from student to student answering their questions. 
The degree to which these questions were answered, and how quickly 
they were answered, had a lot to do with whether or not the students 
persisted, or not, through the aforementioned three phases. In the 
data, I saw cases where students asked so many questions that the 
teacher called the whole class to attention so that they could go over 
what the task is asking—verbally. That is, when the textual format was 
not working, several teachers were driven to shift to verbal means to 
help the students get to the mathematics.

In summary, the results showed that giving 
tasks verbally produced more thinking—
sooner and deeper—and generated fewer 
questions at every grade level, in every 
context, and even in classes with high 
populations of English language learners. 
That is, there was no context in which giving 
a task verbally led students to perform worse 
than giving it textually—whether on a board, 
on a worksheet, or in a textbook/workbook.

Giving tasks verbally 
produced more thinking—
sooner and deeper—and 

generated fewer questions 
at every grade level, in every 
context, and even in classes 

with high populations of 
English language learners.
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I don’t have a large open space in my classroom 
where all the students can stand while I give the 

task. What do I do?

The research showed that such a space was not 
necessary. The students do not all have to stand 

between you and the desks. There can be students standing behind 
desks as well. The important thing is to have them standing and to 
have them clustered in one area. It also helps if you vary where this 
cluster will be from day-to-day. You will see in Chapter 10 how 
informal these clusters can be when you are debriefing an activity.

If the students are standing, how do they write down some of the 
details that I am putting on the board—quantities, measurements, 

geometric shapes, data, long algebraic expressions, et cetera—that 
they will need to work on the first task?

They will not need to do this if you write these things up on a 
board. So, write these details up high on the board where everyone 

can see them, both when the students are in their loose formation 
around you and when they get to the vertical non-permanent surfaces 
they will work on with their groups. Then draw a box around the 
details, and ask whatever group ends up there to not erase them. Some 
teachers have a dedicated board in the room that only they write on 
(not in the “front” of the room), and some teachers use static cling 
whiteboard sheets for this purpose and then move them to a wall 
where no group is stationed.

I have some students who will not be able to absorb the question 
if I give it verbally. Should I give it to them textually, or should I 

also project it textually while giving it verbally?

Our research clearly showed that giving a task verbally and 
textually at the same time produces the same results as giving the 

task textually only. With the presence of text, the students will be 
drawn to the written words first and not listen to your verbal 
unwrapping of the task. With respect to the few individuals in your 
class who you worry will not be able to function verbally, odds are 
that they are not great at decoding text either—very few students are. 
All students are verbal learners long before they are textual learners. 
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This does not go away when they learn to read. What those students 
you are thinking about may not be good at is taking verbal instruction 
in large-group settings. One-on-one, they are likely fine as verbal 
learners. When they get to their small groups, there will be lots of 
opportunities for their group members to reexplain the task in a more 
focused setting. As a teacher, you know for which students such 
reexplaining may be necessary, and you can observe to make sure this 
is happening.

What if most of the students don’t understand what the 
question is?

The research showed that when the boundaries are very porous 
(Chapter 2) and there is a lot of autonomy in the room (Chapter 

8), then only about 20% of the students need to understand the task. 
Knowledge mobility takes care of the rest.

What do I do if I see a group has completely misunderstood 
the question?

As a teacher, you will be required to be ever present and ever 
active in a thinking classroom. After you have given the tasks, 

spend some time watching to make sure that groups have understood 
the instructions and are proceeding as intended. If a group is way off 
track, go to them and work with them to get back on the right track. 
This may involve restating the task for them or directing them to an 
adjacent group that can help redirect them.

What if a task I am giving them involves some technique or 
procedure that they do not yet know? What do I do?

The short answer is you give them the procedure. But you have only 
three to five minutes to do so. This will be discussed more in Chapter 

9. For the time being think hard about what the minimum knowledge 
that is necessary for them to start the first task and what can they learn in 
the first task that will help them with the second task, et cetera.

In this chapter it was mentioned that we would be correctly 
giving tasks verbally if a student walks in late and, based on what 

is written on the board, does not know what is going on. That feels 
wrong to me.

The goal is not that students don’t know what is going on. We 
don’t want to be unnecessarily obtuse with our instructions. The 

idea that a student who comes to class late cannot decode the textual 
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residue on the board and know what to do is an indicator that your 
instructions were mostly verbal. As mentioned in Chapter 2, if a 
student does come late, plug them into a group of two and have the 
group explain what the task is.

How do I distinguish between the parts that I should say and the 
parts that I should write?

An easy rule to follow is to say words, and write numbers, 
symbols, and images. The exception to this rule is that you can 

also write names, labels, or modifiers such as height, area, first, last, et 
cetera. In essence, you write words that help the student demarcate 
information from other information. For example, if you are giving a 
task that involves two different speeds, you may write “speed of the 
bird = 4 m/s” and “speed of the ball = 5 m/s.” The more information 
the task has, the more demarcation is needed. If there is only one 
number in the task and it is the speed of the bird, simply writing “5” 
or “5 m/s” tends to be enough.

I am currently doing a data analysis (or graphing) unit. Can I 
write the data (or graph) on the board, or should I be saying it?

The data (or graph) are details about the task that you do not 
want to burden the students’ cognitive loads with. Many teachers 

will provide each group with a sheet of paper that has the data (or 
graph) on it. Then, what to do with the data (or graph) is given verbally.

I work in a reality where students have to take externally set final 
exams that have a heavy focus on textual tasks. How do verbal 

instructions help prepare them for that?

They don’t. Verbal instructions fast-track thinking. Toward the 
end of the year, you can start to prepare your students for textual 

tasks. Some teachers will do this by once in a while giving a task 
textually and having the groups spend 5–10 minutes decoding what 
they think the task is, asking and then debriefing this in a whole-class 
discussion. This gradually gives way to having them decode and solve 
in groups before discussing the task as a class, and so on until students 
are doing it individually. But know that the teachers who do this well 
do not begin with this until the last third of the year, and then they do 
it only intermittently.

I do preteach my students how to do tasks, and I do it so they can 
be successful. What is wrong with that?
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There is nothing wrong with wanting your students to be 
successful. I think we all want that. The question is really what it 

means to be successful. For a long time, education in general has 
taken that to mean that they can mimic well. Out of this has emerged 
a discourse of being deliberate and intentional about the examples 
and instructions we give students. But, as discussed previously, 
mimicking is not the same as learning, and mimicking is antithetical 
to thinking. So, if we want our measure of success to be that our 
students are thinking, then we have to be deliberate and intentional 
about how we create and maintain an environment that promotes and 
sustains thinking—and this cannot include mimicking.

Somehow, this chapter does not feel relevant to my kindergarten 
classroom. We already use verbal instructions.

Correct. The part about verbal instructions is redundant for 
primary teachers. However, where and when we give the task is 

still relevant. We found that, even in primary classrooms, there was a 
decrease in the number of questions asked when students were given 
the task early in a lesson versus later in the lesson. The same was true 
of having students stand versus sit. However, this does not invalidate 
practices like carpet time at the beginning of the day, which take well 
over five minutes. The research showed that it was important to give 
the tasks within three to five minutes of when the teacher declares 
that the lesson has started. In primary grades, this declaration can 
come after carpet time—“OK. We are now going to do a new activity. 
So, I want everyone to stand up and meet in that corner over there, 
and I’ll give you the instructions.”

How important is storytelling in giving tasks and 
instructions verbally?

In every case in which we were able to create a story, students’ 
uptake of the task was better—they had fewer questions, they 

were able to more quickly begin the task, and they were less likely 
to misunderstand what they were meant to do. There are loads of 

research that support these observations (Egan, 1988) as well as research 
on how to teach mathematics through storytelling (Zazkis & Liljedahl, 
2008), but not all tasks lend themselves to being posed as a story, and 
not all teachers want to be storytellers. What is inherent in storytelling 
that can transfer to all tasks, however, is a narrative structure—a sense 
of chronology. The palindrome task does not lend itself to storytelling. 
That did not prevent us from creating a scripted narrative wherein the 
task emerges out of discussion and dialogue with the students.
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Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. Think about your teaching when students are sitting in their 
seats. How many are really paying attention to you? If a 
teacher were standing in the back of your class and was able 
to see what your students were really doing, what do you 
think they would see?

3. What is it about the students standing in close proximity to 
you that changes the way they pay attention to you?
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4. Think about how often you are verbal, only verbal, in your 
current practice. Don’t just think about when you are talking 
to the class as a whole, but also when you are interacting with 
the students one-on-one or one-on-few.

5. Think about how often you are verbal in your interactions 
with people outside of the classroom. What are the 
circumstances in which being verbal is not enough, and you 
need to demonstrate, point, or write something to help with 
the interaction? What is it you show, point to, or write in 
those circumstances? How does that compare to what you 
write for students in your current practice?

6. What will be the hardest part of trying to be verbal when 
giving a task?

7. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
The following tasks are ideally suited for giving verbally according to 
the scripts provided.

Grades K–3: Next Door Numbers

Teacher Let’s look at these boxes. How many boxes are there?

Students 10!

Teachers  Correct! Now look at this list of numbers. How many 
are there?

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Students 10!

Teacher  What your job is, is to place the 10 numbers into the 
10 boxes. But there is one rule. Two numbers that are 
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next to each other in the list, cannot be next to each 
other when they are in the boxes.

 [Teacher makes random groups.]

Some students will interpret “next to” to mean side by side. This is 
OK. When they are done arranging the numbers in the boxes, snap 
your fingers and say, “Right. Numbers that are next to each other in 
the list also cannot be above or below each other when in the boxes.” 
When they are done with whatever rearrangement this rule requires, 
snap your fingers and say, “Right. Numbers that are next to each other 
in the list also cannot be corner-to-corner with each other when in 
the boxes.”
Source: Adapted from the Next Door Numbers task by © Crown Copyright 2000.

Grades 4–12: Tax Collector

Give the tax collector task as scripted in this chapter. When a group 
has maximized their gain for 12 envelopes, go to 18, then 24, then 30 
envelopes.
Source: Adapted from Diane Resek task “The Tax Collector” (2007).



CHAPTER 7
WHAT HOMEWORK LOOKS LIKE IN  

A THINKING CLASSROOM
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Of the hundreds of teachers whose classrooms I have visited and the 
thousands of teachers I have worked with, almost all of them give 
homework. And almost all of them struggle with its effectiveness. 
In this chapter, you will read about the role that homework plays 
in mathematics classrooms, how students engage with it, and how 
this aligns with the intentions of the teacher. Along the way you 
will be introduced to the limitations of the current institutionalized 
notion of homework and by the end of the chapter learn about an 
alternative conception that puts thinking and student responsibility 
back into homework.

The Issue
Homework, in its current institutionalized normative 
form as daily iterative practice to be done at home, 
doesn’t work. Almost every teacher I have interviewed 

says the same thing—the students who need to do their homework 
don’t, and the ones who do their homework are the ones who don’t 
really need to do it. It is a broken construct that long ago lost the good 
intention under which it was conceived.

If I ask a teacher what homework is for, I almost always get the 
same answer—homework is a chance for students to test their 
understanding, to learn from their mistakes, and to find what they 
need more help with. These are lofty objectives. When I ask students 
what homework is for, they tell me that it is for marks. When I ask 
them who homework is for, they tell me it is for the teacher. And when 
I ask them why their teacher gives them homework, they tell me it is 
for practice.

There is a huge disconnect between what teachers 
and students see as the objectives of homework. 
What is causing this disconnect, and what are the 
implications for teaching and learning mathematics 
in general, and for the thinking classroom in 
particular?

The Problem
Before beginning to experiment with alternative forms of 
homework, we decided to first take a very close look at how 
students were engaging with more institutionally normative 

forms of homework. As we did with the research on studenting 

There is a huge 
disconnect between 

what teachers 
and students see 
as the objectives 

of homework.
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behaviors for now-you-try-one tasks that was presented in the 
introduction, we wanted to know what the spectrum of studenting 
behaviors was for homework. So, we spent time talking to and 
interviewing students in classrooms where teachers gave homework 
as a list of questions to be done at home. In some of these classrooms, 
homework was worth marks, and in some it was not. What emerged 
from this research was a set of four basic studenting behaviors—didn’t 
do it, cheated, got help, and tried it on their own—within each of which 
there were nuances and variation (Liljedahl & Allan, 2013a).

Didn’t Do It

Students don’t do their homework for four basic reasons, one 
of which is that they don’t have time. In some of these cases, 
homework is displaced by things like hanging out with friends, 
playing video games, social media, or streaming shows. But 
often, homework is displaced by more lofty pursuits like 
sports, volunteerism, work, family functions, music, and other 
homework. From the interviews, we learned that a lot of students 

are legitimately very busy. Many younger students are participating in 
multiple sports, and older students have multiple teachers who are 
giving homework.

A second major reason students don’t do homework is that they forget. 
This forgetfulness is usually symptomatic of two issues—homework 
is not important to them, and/or they have poor record keeping. 
Usually students who are forgetful are not always forgetful and do 
their homework sporadically. A more common reason students do 
not do their homework, however, is that they don’t know how to do 
it. This is often masked by excuses of being busy or forgetting. At its 
core, not knowing how to do the homework is the most legitimate 
reason for not doing it. Finally, students do not do their homework 
because they don’t want to do it. If it is not worth marks, it is easier 
not to do it. Even if homework is randomly checked, students may 
take a chance that this particular homework assignment will not be 
marked and choose not to do it.

Not doing their homework was not something that was unique to 
middle and high school students. This behavior was seen with almost 
equal distribution in all classes where homework was assigned—
irrespective of grade.
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Cheated

If you ever want to have a good day, ask some middle or high school 
students to tell you about some of the ways in which they cheat in 
other teachers’ classes. Some students are amazingly innovative and 
industrious and are often keen to share some of their brilliance when it 
comes to cheating. When it comes to homework, cheating predictably 
includes copying from someone else or borrowing someone else’s 
work. But their ingenuity goes well beyond these tried and true 
methods. A number of students we interviewed admitted that they 
had access to an entire binder of worked homework solutions from 
students who had taken the same course with the same teacher in 
the past—something that only works with teachers who use the same 
homework questions year after year.

Even more industriously, several students had pages in their binder 
ready to go if there was ever a homework check. These pages were 
covered in dense mathematics, some had diagrams, and some had 
graphs. When the teacher began to walk up and down the aisles 
checking that students had done their homework, these students would 
display some of these pages in lieu of the actual homework. We were 
told by these students that this almost always works. And if it didn’t, 
they had an out. If the teacher noticed that it was the wrong homework, 
something they assured us rarely happened, they would just say, “It is?” 
and then start randomly flipping back and forth in their binder until 
the teacher became impatient and walked away. Unbeknownst to us, 
we witnessed this working twice. Only after the homework check had 
happened did students reveal to us what they had really done.

The most innovative form of cheating we witnessed, however, were 
students who had the same course with the same teacher, but in 
different blocks, who shared a binder or a workbook. These students 
had brilliant protocols for division of labor that went well beyond 
homework and included note taking and test review.

Regardless of the method of cheating, however, any student who 
admitted to cheating was asked to explain why they did it. The least 
common, but most interesting, answer was that some students cheated 
because it was fun—they liked the subterfuge and the excitement of it. 
More common was that they didn’t know how to do the homework. 
Cheating, for these students, was a way to mask their lack of ability. The 
most common reason for cheating, however, was that the homework 
was for marks—and cheating assured that the marks would be gotten. 
Sometimes the reason for cheating was a combination of two or three 
of these reasons.
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Although cheating was a behavior that we saw more with Grade 6–12 
students, there were also some cases of cheating in students as young 
as Grade 2. In these cases, the most common form of cheating was 
copying from a peer, which was something peers were very reluctant 
to allow. When talking to the students who cheated, it became clear 
that they did this primarily because they forgot to do their homework 
and they wanted to avoid disappointing their teacher.

Got Help

Students often get help with their studies. From homework to 
preparing for tests, some students routinely seek help from peers, 
parents, tutors, and teachers. This was neither unexpected nor 
uncommon. What was interesting, though, was the reason behind, 
and the results of, getting help.

When asked why they sought help, almost all students 
claimed it was because they didn’t know how to do the 
assigned work. There were a few cases where working 
with peers, parents, tutors, or their teacher was part 
of the daily homework routine irrespective of help 
being needed or not. When students who got help 
from a tutor or parent were asked how they would 
do if a pop quiz based on the homework were given, 
90% of the students said they would fail. So, what did 
they get help with? They got help with getting the 
homework done—not with learning.

Drilling deeper into these data, it turns out that the exceptions were 
the students who worked with adults as part of their homework 
routine, whether help was needed or not. These routines seem to 
be responsible for the lower number of elementary and middle 
school students who said they would fail such a quiz. For them, the 
likelihood that they have a homework routine with their parents was 
much higher, and hence their results were better. The other exception 
was the students who had homework routines that involved working 
with peers, all of whom said they would pass.

Tried It on Their Own

The rest of the students tried the homework on their own. Some 
completed it and some did not. Regardless, they did not say they forgot, 
cheated, or got help. Of these students, the vast majority completed the 
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homework by mimicking from either their notes or the textbook. Like 
the students who mimicked on the now-you-try-one tasks discussed in 
the introduction, when asked about this, all of these students said they 
thought this is what they were supposed to be doing.

Lukas Why else would he have notes?

Fatima Isn’t that what the teacher wants us to do?

Samantha The teacher shows us how to do it and then we 
need to practice it. Right?

In fact, this mimicking behavior was such a dominant strategy that 
when the examples ran out, so did their ability to answer homework 
questions.

Researcher Were you able to do all of the question?

Stephan Yup. Except for the last two. I didn’t have examples 
for those.

Of all of the students we interviewed who used mimicking as a 
strategy to complete the homework on their own, less than 20% were 
even willing to move beyond this strategy when the examples ran out, 
and less than half of those were able to answer questions for which an 
analog did not exist in their notes or the textbook.

Among two hundred students in Grades 4–12 that were interviewed, 
these four behaviors—not doing it, cheating, getting help, and doing 
it on their own—were distributed almost evenly in classrooms where 
homework was marked (Figure 7.1). When homework was not 
marked, cheating disappeared almost completely (Figure 
7.2), and, whereas the number of students who did not 
do their homework increased, so too did the number of 
students who did it on their own. That is, in situations 
where homework was marked, approximately 50% didn’t 
do it or cheated. When homework was not marked, this 
percentage drops to approximately 40%—not marking 
homework had a positive effect on how many students did 
their homework.

Of course, these numbers vary between elementary and secondary 
students, with more elementary students getting help than secondary 
students, and fewer forgetting or cheating. There doesn’t seem to be 
any sort of linear deterioration in the way homework is approached 
as students get older, but it is clear that when marks start to matter 
to the students and their parents, their homework behavior changes 
markedly for the worse.

Not marking 
homework had 
a positive effect 

on how many 
students did 

their homework.
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These data confirm what we already know—what 
you likely already know. Homework is not working. 
Students are doing it, if at all, for the wrong reason 
(marks) and the wrong person (their teacher or 
their parents). And those who are doing it for the 
right reasons (to check their understanding) and 
for the right person (for themselves) are mimicking. 
Homework, in its current formulation, needs to 
be upgraded. It needs to be rebranded. It needs to 
become a thinking activity.

Toward a  
Thinking Classroom

In the history of schooling, homework has been rebranded once 
before—as practice. In many classrooms, especially elementary 
classrooms, the word practice is still used either to describe work done 
in class or used synonymously with homework. Regardless, practice 
puts a greater emphasis on mimicking while still not resolving 
the issue of why it is done and who it is done for. As Samantha’s 
comment (above) shows, when the terminology of practice was used, 
it increased the perception that mimicking was what students were 
meant to be doing and, as a result, increased mimicking behavior. 
And, as discussed, mimicking has limitations and is antithetical to 
the kind of thinking behaviors that thinking classrooms are trying 
to foster.

Figure 7.1 Studenting behaviors 
when homework is marked.

Figure 7.2 Studenting behaviors when 
homework is not marked.
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So how do we rebrand? Let us come back to the 
notion of why homework is done and who it is done 
for. We’ve seen that if the purpose of homework is 
to get marks and/or if it is done for the teacher (or 
parents), it loses its potential to achieve what teachers 
really want it to achieve—for homework to be a safe 
place for students to make mistakes as they check 
their understanding. In here lies the rebranding 
needed. So, we stopped calling it homework and 
started calling it check-your-understanding questions.

Calling it check-your-understanding questions specified 
who it was for—the student (you)—and what it was for—
to check understanding. This had an immediate effect 
on students. We saw more students doing check-your-
understanding questions on their own than had we seen with 
“homework”—and they were doing it for the right reason. 
Even when students were seeking help, they were now 
seeking to understand rather than seeking to be done. And, 
students were, for the most part, no longer talking about 
marks, practice, mimicking, or doing it for the teacher or their parents.

Of course, it was not as simple as just relabeling. As with the other 
practices discussed thus far, the use of check-your-understanding 
questions needed to be accompanied by a slate of other changes to 
teaching practice. First, the questions could not be marked. They 
couldn’t even be checked. In fact, there can be no overt actions on 
the part of the teacher to enforce that the questions are being done—
either positively or punitively. Any efforts to do so were met with 
an immediate and almost complete transition back toward these 
questions being done for the teachers. In essence, if you want check-
your-understanding questions to be a safe place for students to make 
mistakes, then you have to keep it safe.

This was difficult for us to accept. In every case where we implemented 
check-your-understanding questions, 15%–50% (usually 15%–25%) 
of students didn’t do them. This sounds bad. But on the flip side, 
this meant that 50%–85% (usually 75%–85%) of students were doing 
the questions, and doing them for the right reason and for the right 
person. Although the studenting data on homework showed 75% of 
students completing their homework, only about 10% were doing 
so for the right reason. When completion is the goal, it encourages, 
and sometimes rewards, behaviors such as cheating, mimicking, and 
getting unhelpful help.

We stopped calling it 
homework and started 
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This is not to say that you cannot talk to your students about them doing 
their check-their-understanding questions. This turned out to be very 
important—but also very risky. The discourse around this, as it turns 
out, needs to be focused on check-your-understanding questions as an 
opportunity to learn from their mistakes (without risk), to check their 
understanding, and, above else, is for them and only them. We need to 
drop any references to words like practice—which invokes mimicking 
behavior—and assignments—which invokes a sense that it is for a mark.

Another change in practice was that answers needed to be provided at 
the same time as the questions were given. If check-your-understanding 
questions were truly to be seen as a way for students to check their 
understanding, they needed something to check against—they needed 
answers to see if their understanding was correct. Fully worked out 
solutions can also be provided, but not right away. We learned that 
when students see these before they have done the questions, some 
mistake their understanding of the worked solution for an ability to do 
the questions on their own and choose not to do them.

So, the questions may be the same as what we previously gave as 
“homework.” But to make doing them a thinking activity, everything 
around them changes—what we call it, how we talk about it, the 
autonomy students have to do it, and our openness to the fact that 
students may not do some or all of the questions. And when these 
changes occur, the doing of check-your-understanding questions 
becomes a thinking activity (see Figure 7.3).

Figure 7.3 Students doing check-your-understanding questions at lunch.
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If I don’t check or mark the check-your-understanding questions, 
most of my students will not do them. Are there any strategies I 

can use to get them to do them?

Let’s assume that we have half of your students doing the check-
your-understanding questions, and doing them for the right 

reason. First of all, these are already better statistics than we saw in 
the studenting data around homework. Second, the research showed 
that if we start policing these questions, we will be successful in raising 
the number of students who do them. But we will sharply decrease 
the number of students who are now doing them for the right reason—
for themselves to check their understanding. Of all the things we 
researched, check-your-understanding questions is one of the most 
sensitive to disruption. This is not to say that there are not small 
things you can do to encourage them to do these questions for 
themselves. As mentioned, our discourse around this practice is 
helpful. The use of words such as opportunity are helpful—and the 
use of words like practice and assignment are not. If you are doing this 
within the context of the other thinking classroom practices discussed 
so far, talk to the students about how check-your-understanding 
questions is a chance for them to see if they can do on their own what 
they already did in their groups. In essence, if you can keep the focus 
on them and the correct reason for doing the questions, anything you 
say is helpful.

For example, one teacher I worked with asked their students to 
discuss amongst themselves which of the check-your-understanding 
questions they thought were the most important for them to do. This 
metacognitive discussion had a significant impact on how many 
students did at least some of the questions.

I don’t give homework. I give my students questions to do in 
class, but I don’t send anything home for them to do. Should I 

still be changing what I call these questions done in class to check-
your-understanding questions?

Yes. Unlike homework, the name check-your-understanding 
questions does not specify where and when they are to be done. 

Neither does it specify that they must be done. This is about messaging 
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around why and for whom these questions are done. Having said that, 
the research showed that as long as we’re not policing, giving class 
time to do these questions increases the number of students who do 
the questions and the number of questions they do.

So much of building thinking classrooms is about collaboration. 
Can the students do their check-your-understanding questions 

in groups?

Check-your-understanding questions are for the students, and 
they have autonomy over all aspects of them. If they choose to do 

them in groups, we cannot and should not prevent them from doing 
so—and we should not control who is in the groups. In fact, if you 
give class time to do check-your-understanding questions, 40–70% of 
your students will choose to do them in self-selected groups of two or 
three. Many of these groups will choose to do them on VNPSs, and 
many will stay in the random groups from the beginning of the lesson. 

Although they are working collaboratively, what is interesting 
is that the goal remains the same—for them to check their own 
understanding. And with this comes a very interesting 
discourse as they strive to learn from each other—“I don’t get it. 
. . . I still don’t get it. . . . Ok. I think I get it. Give me another one 
to see if I got it.” Although they are working together, the goal 
remains fixed on checking their understanding.

So, you say that we can give worked solutions—but not right 
away. Should we do this? And if so, when?

First, to make sure we are all on the same page, we need to 
differentiate between answers and worked solutions. x = 7 is an 

answer. It reveals nothing about how we arrived at that solution. How 
we arrived at that solution is the worked solution. The research 
showed that giving worked solutions became more and more 
important the more complex the questions were. This corresponds 
loosely with an increase in grade level, but not exactly. The research 
also showed that worked solutions should not be given out until the 
students have had a chance to work on the questions, checked the 
answer they arrived at against the answers provided, and, if needed, 
retried the questions—sometimes multiple times. As mentioned 
above, if we give the worked solution at the same time as the question, 
some students will read the solution and think that, because they 
understand what is happening, they understand how to do it on their 
own. However, if the worked solutions are provided the next day, or a 
few days after, the students now have a chance to compare their 
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thinking to that of the worked solution as well as to get help with any 
questions they were unable to resolve on their own. Many teachers I 
worked with gave out worked solutions by posting them on a class 
website or portal.

I have parents asking for homework or practice. How do I deal 
with this?

Begin by communicating with them about why you give 
“homework” and how these reasons are embodied in the name 

check-your-understanding questions. Explain that the questions that 
may or may not be coming home are to be treated as a safe place for 
their child to make mistakes and that the purpose is for them to learn 
from these mistakes. If they insist on having more questions for 
practice, you can tell them that ample practice questions can be found 
on the internet, but that they will not be part of your teaching practice.

I teach primary grades, and I do not typically assign homework. 
Should I be doing check-your-understanding questions?

Yes. But I am willing to bet that you already do. Every teacher I 
have ever worked with from kindergarten through Grade 12 

gives students questions to do. Irrespective of what you may call these 
questions, you are likely giving them as a way for students (and you) 
to check their understanding.
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Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. Which of your students do their homework, and 
which do not?

3. Of those who do their homework, why do they do it? If you 
consider yourself successful at getting students to do their 
homework, what message are your methods sending to your 
students? That is, why do they do their homework, and who 
is it for?

4. Contrast your answers to Question 3 with the reasons for 
why you want your students to do their homework.
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5. In this chapter, it was mentioned that practice invokes 
mimicking. What are your thoughts about practice as 
an effective learning tool? Is this what you want your 
students to do?

6. What do you think about the reality that some students 
may choose not to do, or not do all of, the check-your-
understanding questions? How will you cope with this?

7. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
Rebrand what you would previously refer to as homework or practice 
into a set of check-your-understanding questions. Give it to your 
students with the answers, and emphasize how this is an opportunity 
for them to see whether they have understood what happened in 
their groups. Do not collect it, or mark it, and the next day provide 
the worked solutions for them to use to check whether they truly did 
understand it.



CHAPTER 8
HOW WE FOSTER STUDENT 
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Whether or not you have been implementing the practices as you have 
been reading along, by now you will have concluded that a thinking 
classroom looks very different from a typical classroom. Students are 
working in groups rather than individually, they are standing rather 
than sitting, and the furniture is arranged so as to defront the room. 
Closer inspection will reveal that the teacher is giving instructions 
verbally, is answering fewer questions, and has drastically altered the 
way they give “homework.” All of these changes require 
a greater independence on the part of the students. This 
chapter will look at how you can begin to build this 
independence through giving students more autonomy 
over their own actions and how this autonomy not 
only changes the way students engage with a thinking 
classroom, but also how it makes your job as a teacher 
in a thinking classroom easier.

All of these changes 
require a greater 

independence 
on the part of 
the students.

The Issue
From a teaching perspective, one of the big differences 
you may be experiencing, or anticipate experiencing, is 

that in a thinking classroom you, as the teacher, have a lot less control 
over what is happening in the room. When students are sitting in 
desks, all facing the front, and presumably following along with what 
is happening at the board, the teacher has a lot of control around what 

Figure 8.1 Students working independently in random groups on VNPSs.
Source: Used with permission
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is happening for all the students in each moment—in this moment 
all the students are doing notes, in this moment all the students are 
doing now-you-try-one questions, in this moment all the students are 
starting their homework, et cetera. Everything is sequenced, paced, 
and synchronized so that everyone is doing the same thing at the 
same time—or at least seemingly so. We know from the studenting 
research presented so far that what goes on behind this façade is quite 
different from what we intend and, even, what we see. Regardless, 
there is structure. And the stronger the structure, the lesser the need 
for the students to be independent—and the lesser the need for 
students to have autonomy.

The Problem
Lack of autonomy is synonymous with lack of choice. And 
lack of choice reduces the need for students to think. The 

research clearly showed this. The amount of thinking students were 
required to do, and did, was sharply reduced in situations where their 
actions were managed—even micromanaged. In thinking classrooms, 
students’ actions cannot be managed the same way as in a typical 

classroom. When students are working in random 
groups on vertical non-permanent surfaces, you can 
typically only work with one group at a time. This 
means that at any given moment there are 8–10 groups 
that need to be working independently. There is much 
happening outside of your control, and in order for it 
all to work well, students need to take on much more 
responsibility for their learning. This cannot happen 
unless they have the autonomy to do so. The question 
is, exactly what should they have autonomy over, and 
how are you going to foster this?

Toward a Thinking 
Classroom

Early in the research into building thinking classrooms, it became 
apparent that every teacher implemented the thinking classroom 
practices slightly differently. Whereas some teachers used cards to 
randomize their students, others would use a computer app. While 
some teachers had students working on whiteboards, others had 
them working on windows or tables standing on end. Where some 

The amount of 
thinking students 

were required to do, 
and did, was sharply 
reduced in situations 
where their actions 

were managed—
even micromanaged.
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teachers gave class time for check-your-understanding questions, 
others asked for them to be done at home. And so on. This was totally 
OK, as these practices are meant to be thought of as a framework 
much more than an overly prescriptive set of pedagogical moves that 
must be adhered to. As mentioned in the introduction, the building 
thinking classrooms framework is a collection of empirical results 
that offer teachers a chance to fundamentally change the way students 
experience mathematics. An individual teacher may not wish to, or 
be able to, implement each practice in the exact way that the research 
showed was best. And even if they do, they have to find a way to 
personalize it and make it their own practice. That is, each of you 
has autonomy over whether, and how, you implement the thinking 
classroom practices.

For me, the differences I was seeing from room to room were 
fascinating, and I wanted to learn more from them. One of the biggest 
differences was how many students’ hands were raised, and how 
often. In some classes many students had their hands up every time 
they were done with a question or when they were stuck. In other 
classes I saw no hands go up—yet, these students seemed to progress 
just as far, even further, than those in classes where the teacher was 
providing a lot of help. Just to be clear, this research was done prior 
to the research on how to, or how not to, answer students’ questions.

When I began to pay closer attention to the classes 
where students rarely, if at all, put up their hands, I 
began to notice that there was much more interaction 
between groups and that this interaction was both 
passive (looking at other groups’ work) and active 
(talking to other groups). Further, I noticed that 
these interactions occurred most often at moments 
when a group was either finished or stuck. That is, 
when a group was finished with their current task, 
they would look around the room to first confirm 
their answer and then look for a question that 
another group was working on that they had not yet solved. If, in 
their efforts to confirm their answer, they saw conflicting answers, 
they would either take this as a cue to dive back into their own work 
or go and talk to the group with the different answer.

If students were stuck, they would behave in much the same way and 
either passively look at other students’ work to see if this could inspire 
an idea of how to proceed or hint at what they may be doing wrong. 
Often these passive looks resulted in the borrowing of notation and/or  

There was much more 
interaction between 

groups, and this 
interaction was both 
passive (looking at 
other groups’ work) 

and active (talking to 
other groups).
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organizational tools such tables, graphs, diagrams, et cetera. But 
sometimes it would prompt a more active interaction in the form of a 
conversation with another group.

What was clear from all these interactions, both 
passive and active, was that, in these classrooms, 
knowledge moved easily from group to group. This 
made the work of the teacher much easier. The more 
independent and responsible the students were in 
managing their learning, the more focused time 
the teacher had to spend with groups that really 
needed their attention. It was also clear that this 
independence was a product of the autonomy the 
students were given to both passively and actively 

interact with other groups and their ideas within the room—to 
mobilize the knowledge in the room.

This is not to say that the students had total freedom to do 
what they wanted. If students from different groups were 
meeting up to discuss something not related to mathematics, 
the teachers were quick to get them back on task. The same 
was true if the teachers saw students using their cell phones for 
non–mathematics related activity. The autonomy the students 

were afforded was specific to knowledge mobility. If you need help, get 
it. If you need another question to work on, find it. This was clearly 
important and, therefore, became one of the practices identified as 
being needed for building thinking classrooms.

Ironically, when I mentioned autonomy to the teachers who had 
many students who frequently put up their hands, all of them said 
that they do give their students the autonomy to look around and 
interact with other groups and that they often tell their students that 
it is OK to do so. I even watched three of these teachers do just that, to 
no effect. So, I went back to the teachers whose students were not only 
given autonomy but who also used that autonomy to keep themselves 
moving forward through passive and active interactions. Even closer 
inspection of what the teachers did in these classrooms revealed that 
they, themselves, frequently made use of the knowledge in the room to 
move groups forward. That is, rather than directly answer questions, 
help, or give the next question, they would sometimes direct a group’s 
attention to what another group was doing.

Teacher So, where are you at with this?

Group I think we’re stuck. We’re just going around and around.

What was clear from 
all these interactions 
was that knowledge 
moved easily from 

group to group. This 
made the work of the 
teacher much easier.



137CHAPTER EIGHT | HOW WE FOSTER STUDENT  AUTONOMY IN A THINKING  CLASSROOM

Teacher Hmmm . . . Why don’t you look at how that group 
[teacher points at Group 3] has organized their data? 
That might help.

Teacher What’s going on? You guys are just standing here.

Group We’re done. What’s next?

Teacher Why don’t you ask the group next to you? [Teacher 
points at Group 8 on their right.] They seem to be 
working on something different.

These types of moves were seen much less frequently in the 
classrooms where students put up their hands often. In those settings 
the teacher was much more likely to suggest using a table or give the 
next question, respectively.

These deflective moves became something we began 
to experiment with. Working with teachers from 
kindergarten to Grade 12, we began to have teachers 
direct students to other groups whenever they were 
stuck or in need of a new question. In short, rather than 
being the source of knowledge in the room, teachers 
were working to mobilize the knowledge already in the 
room. That is, they were being deliberately less helpful. 
This proved to be extremely effective at getting students 
to seize the autonomy they had been given and begin 
to use it to keep themselves moving forward. After the first two-week 
cycle, we were seeing huge improvements in this regard, and after a 
second two-week cycle classrooms were, for the most part, functioning 
the way we wanted—fewer hands in the air and more passive and active 
interaction between groups.

Rather than being the 
source of knowledge 
in the room, teachers 

were working 
to mobilize the 

knowledge already 
in the room.

Figure 8.2 Students actively and passively interact between groups to further their learning.
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In the second cycle, we also began to mobilize knowledge even before 
groups were stuck or in need of a new question. The most obvious 
time to do this was when two or more groups had different answers. 
Getting these groups to talk to each other without specifying which 
was correct or incorrect (sometimes both) proved to be a very effective 
way to deepen students’ thinking.

Teacher So, this group over here has 45 as their answer 
[pointing at Group 4]. And this group has 51 as their 
answer [pointing at Group 5]. I can guarantee you that 
at least one of you is wrong. But, I am willing to bet 
there are parts of your answers that you both agree 
on. Start talking about the parts you agree on, and 
then talk about the parts that you do not.

The same was true when groups had the same answers but different 
ways of approaching them.

Teacher I see that both of you have the same answer [pointing 
at groups 7 and 8]. But you did it in completely 
different ways. I would like each group to try to figure 
out what the other group was thinking.

Purposefully mobilizing knowledge by forcing either 
passive or active interaction between groups activated 
the autonomy students had been given, increased 
independence, and deepened thinking. It also increases 
the porosity between groups that was started with the 
random groupings discussed in Chapter 2.

Activating their autonomy also had an effect on 
how students thought about their work and their 
workspace. First, groups stopped trying to shield 
their work from others, and comments such as 
“they’re cheating” quickly disappeared. On the other 

hand, students were much more likely to look around without feeling 
like they, themselves, were cheating. And there was an increased sense 
that they all had something to offer others.

Group 1 The teacher sent us over here to see what you guys 
are doing.

Group 2 That must mean that one of us has something to 
share. I wonder if it is you guys or us?

Autonomy, like room organization, was not something that I began 
my research thinking about as an independent variable in need of 
research. But, as it did with classroom organization, spending time in 

Purposefully mobilizing 
knowledge by forcing 

either passive or active 
interaction between 
groups activated the 

autonomy students had 
been given, increased 

independence, and 
deepened thinking.
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classrooms and experimenting with practices that increase thinking 
revealed that autonomy is a variable that needs attention.

A thinking classroom is a classroom where 
students think individually and collectively. The 
collective goes well beyond the limits of the group 
boundaries and encompasses the whole class. We 
need to give groups the autonomy to make use 
of the knowledge in the room. But this, it turned 
out, was not enough. We need to also help them 
to break down the barriers around their groups by 
mobilizing the knowledge in the room for them. 
Not only does this build the independence that is 
needed for a thinking classroom to function well, 
it also engenders the type of 21st century skills 
that people need to work and collaborate in the real world.

So, does this mean I should stop answering all questions?

No, it doesn’t. But if you want your students to begin to seize the 
autonomy you have given them, then look for moments where a 

group can get what they need from another group. When you find such 
a moment, the key is to not say or show something another group can.

If I give and foster this kind of autonomy, won’t some groups just 
begin to copy from other groups?

As mentioned in the FAQ of Chapters 2 and 3, this actually 
turns out to be a very rare occurrence. In the hundreds of 

times I have been in a thinking classroom, I have never seen a 
group copying, line by line, from another group. By and large, 
when a group looks at another vertical surface, they look for 
hints. These hints often take the form of notation, organization, or key 
ideas. Once they have acquired the hint, they go back and solve the 
problem for themselves. Or they’re looking for validation, so that they 
feel confident to move on. Eventually, students start to look to other 
groups for extensions. In short, groups look for the things that you would 
feel comfortable giving them if you were to help them.

We need to give groups 
the autonomy to make 
use of the knowledge 

in the room. We need to 
also help them to break 

down the barriers around 
their groups by mobilizing 

the knowledge in the 
room for them.
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Is there ever a time where I would want a group to work entirely 
on their own without any hints from the other groups in the room?

There are two instances where you may wish for this. The first is if 
you ever wanted students to answer some check-their-

understanding questions where you want them to really see whether 
they understand what they are capable of doing entirely on their own. 
The second we will see in Chapter 14, when we discuss the possibility 
of doing group quizzes. In neither of these instances is it necessary that 
groups work without interactions with other groups, but if you wish for 
this to be the case, you can give every group a different question. This is 
more taxing on you, but it achieves what you are looking for.

Is it helpful to put two groups together that have the same 
strategies or the same solutions?

Yes. Every group develops their own way of talking about a 
problem and their own way of representing it. This is why, when 

you put two groups together, one of the first things they do is to 
negotiate language and notation. So, even if you put two groups 
together who have seemingly similar solutions, these negotiations 
will strengthen their understanding of the solution.

How can I tell whether groups are actively interacting for the 
purpose of mobilizing knowledge or just for socializing?

The short answer is to listen to them. However, if you are not close 
enough to listen, then there are a few visual cues you can attend to. 

First, if one member of a group is talking to only one member of another 
group, then there is a strong chance that they are socializing. If both 
groups have backed away from the vertical surfaces and no one is 
gesturing toward the vertical surfaces, there is also a strong chance they 
are socializing. However, keep in mind that I have seen both of these 
occur and the discussion being 100% about the mathematics and the 
problem at hand. Also keep in mind that when two groups first begin 
to actively interact, they may begin the interaction by joking and talking 
about things off topic. This is a normal part of social interaction and 
should be tolerated. If it goes on for too long however, you need to 
intervene to get them back on task—“OK. Now that everyone has gotten 
to know each other, how about we get on with the math?”

If one group is helping another group, how do I know that they 
are helping and not just telling them how to do it?

For the most part, it doesn’t matter. Regardless of how a group 
acquires new knowledge, they tend to take that knowledge and 
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try to apply it for themselves. Even if they do not, the extension they 
are next asked to work on often requires them to apply their new 
knowledge anyway. Having said that, it is always best if groups who 
are in the helping role are thoughtful about how they give out ideas so 
as to maximize the opportunity for the learning group to think. You 
may wish to discuss this with your class from time to time—but not 
until after you have begun to mobilize knowledge.

What if the help that a group actively gives, or a group passively 
gets, is mathematically incorrect?

This happens. But, in the collaborative setting of a thinking 
classroom, groups tend to self-correct. After all, the more eyes 

that are on something, the less likely an error goes unnoticed. For this 
reason, mobilized knowledge, like collaboration, also tends to 
converge toward correctness. And do not forget that you are still in 
the room and monitoring progress. If you see an error, you can 
point it out.

Summary
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Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. Have you already given your students autonomy to interact 
across groups? Have they taken advantage of this autonomy 
to the degree that you wish?

3. What other ways might you foster autonomy beyond what is 
mentioned in this chapter?

4. This chapter focused on the nurturing of independence 
through the fostering of autonomy. Have you found any 
other ways to nurture independence?

5. What is your feeling about mobilized knowledge versus 
groups doing the work on their own?

6. What are your feelings about the possibility for the 
proliferation of errors in a classroom where knowledge is 
being shared between groups?

7. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
The thinking tasks that follow have been shown to produce diverse 
solutions and solution methods—ideal ground to foster autonomy 
through mobilizing knowledge.
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Grades K–4: Pentominos

Using exactly five multiplex cubes, how many different shapes can 
you make such that there is a way to place the shape on the desk so 
that all five cubes touch the desk?

Grades 5–8: Nickels, Dimes, and Quarters

How many ways are there to make a dollar using only nickels, dimes, 
and quarters?

Grades 9–12: Birthday Cake

You want to arrange four candles on a cake. How many ways can 
you place the candles such that there are no more than two different 
distances between any two candles?



CHAPTER 9
HOW WE USE HINTS AND  

EXTENSIONS IN A THINKING  

CLASSROOM
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In Chapter 1, the claim was made that curriculum tasks can also be 
thinking tasks. Yet, with the exception of Chapter 7, every chapter 
since then has concluded with a non-curricular thinking task for you 
to use in trying to implement the thinking practice discussed in that 
chapter. In this chapter, I continue the thread started in Chapter 1 
and discuss how curriculum tasks are the main staple of thinking 
classrooms. By the end of this chapter you will have learned not only 
how to craft and sequence curricular tasks for use as thinking tasks, 
but also how to use hints and extensions to help students think their 
way through these sequences and, as a result, cover large amounts of 
content in a short amount of time.

The Issue
Mathematics teaching, since the 
inception of public education, has largely 

be been built on the idea of synchronous activity—
students write the same notes at the same time, they 
do the same questions at the same time, they get the 
same hints and extensions at the same time. From a 
teacher’s perspective, this is an efficient strategy that, 
on the surface, allows us to transmit large amounts of 
content to groups of 20–30 students at the same time.

If we go under the surface, however, we realize that 
students’ abilities are more different than they are 
alike, and the idea that they can all receive, and 
process, the same information at the same time is 
outlandish. Decades of work on differentiation is 
built on the realization that students learn differently 
and at different speeds, and have different mental 
constructs of the same content. What this work is 
telling us is that students need teaching built on the 
idea of asynchronous activity—activities that meet 
the learner where they are and are customized for 
their particular pace of learning.

The Problem
From a learning perspective, the notion that learners need 
customized attention and to go at varying paces makes sense. 
But from a teaching perspective, the thought of trying to do 

this for 20–30 students at one time can be overwhelming. Couple this 

Mathematics 
teaching, since the 
inception of public 

education, has 
largely be been 

built on the idea of 
synchronous activity.

Decades of work on 
differentiation is built 

on the realization 
that students 

need teaching 
built on the idea of 

asynchronous activity.
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with the need to move every student through large amounts of content 
with limited contact time, and the idea of differentiating learning for 
every student may seem untenable. This is not to say that it can’t be 
done. There are scores of teachers who have effectively differentiated 
their instruction and provided customized learning opportunities for 
each of their students. Their students, in turn, are reaping the benefits 
of the individualized learning afforded by these teachers’ efforts. 
Regardless, if differentiation is something that you have or have not 
been able to achieve in your teaching, the question remains, how does 
it look in a thinking classroom where students spend much of their 
time thinking in groups?

Toward a  
Thinking Classroom
As indicated in Chapter 1, thinking and engagement 

are closely associated. If we are thinking, we will be engaged. And 
if we are engaged, we are thinking. Although thinking is a private 

and invisible process, engagement has a physicality that is 
easily observed and easily identified. As such, engagement 
is a methodological tool that can be used to see when 
students are thinking. More than this, however, engagement 
is a pedagogical tool that can be used to build thinking 
classrooms.

To see this, we need to go back to the early 1970s and look at 
the work of Mihály Csíkszentmihályi, a Hungarian-born psychologist 
working at the University of Chicago. At the time, Csíkszentmihályi 
was very interested in understanding something that he referred to as 
the optimal experience (1990, 1996, 1998),

a state in which people are so involved in an activity 
that nothing else seems to matter; the experience is so 
enjoyable that people will continue to do it even at great 
cost, for the sheer sake of doing it. (Csíkszentmihályi, 
1990, p. 4)

The optimal experience is a form of intense engagement we are 
all familiar with. It is that moment where we are so focused and 
so absorbed in an activity that we lose all track of time, we are 
undistractible, and we are consumed by the enjoyment of the activity. 
As teachers, we see rare glimpses of this type of engagement in our 
students when the bell rings and they are reluctant to leave.

If we are thinking, 
we will be 

engaged. And if 
we are engaged, 
we are thinking.
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Wanting to better understand this rare and powerful phenomenon, 
Csíkszentmihályi studied people he thought were most likely to 
have experiences with it—musicians, artists, athletes, scientists, and 
mathematicians. Over time he gathered enough cases of the optimal 
experience that he could begin to look for patterns—and patterns he 
found (Csíkszentmihályi, 1990).

For example, he noticed that whenever someone had an optimal 
experience, they lost track of time, and much more time passed than 
the person realized. He noticed that when someone was having an 
optimal experience, they were undistractible and unaware of things in 
their environment that would otherwise interfere with their focus. He 
noticed that their actions became a seamless and efficient extension 
of their will. And he noticed that they became less self-conscious, 
stopped worrying about failure, and were doing the activity for the 
sake of doing it and not for the sake of getting done—it became an 
end unto itself.

These characteristics, like thinking, are 
all internal to the doer and, as such, 
invisible to the observer. However, 
Csíkszentmihályi also noticed that whenever there was an optimal 
experience, there were three qualities also present in the environment 
in which the optimal experience was taking place—clear goals every 
step of the way, immediate feedback on one’s actions, and a balance 
between the ability of the doer and the challenge of the task. Unlike 
the first six characteristics, these are external to the doer and, as such, 
observable—and recreatable.

The third of these environmental characteristics—balance between 
challenge and ability—is central to Csíkszentmihályi’s analysis of 
the optimal experience (1990, 1996, 1998) and comes into sharper 
focus when we consider the consequences of having an imbalance in 
this system. For example, if the challenge of the activity far exceeds a 
person’s ability, they are likely to experience a feeling of frustration. 
Conversely, if their ability far exceeds the challenge, they are likely to 
experience boredom. When there is a balance in this system, a state 
of what Csíkszentmihályi refers to as flow is created (see Figure 9.1). 
Flow is, in brief, the term Csíkszentmihályi used to encapsulate the 
essence of optimal experience and the aforementioned elements into 
a single emotional-cognitive construct.
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Figure 9.1 Graphical representation of the balance between challenge 
and skill.

Using Extensions to Maintain Flow

At this point Csíkszentmihályi’s research on flow goes 
in a different direction, and my research on building 
thinking classrooms comes in. In essence, flow is where 
engagement and, as a consequence, thinking happens. 
Therefore, to build a thinking classroom we need to be 
able to get students into, and keep them in, flow. And to 
do this, we need to first understand how students move 
about inside of flow.

Representing flow as a graph that shows the balance between a doer’s 
ability and the challenge of the task at hand invokes thoughts that this 
is a static space made up of fixed points, each of which represents a 
potential student’s place on the graph. This is not how flow works. 
Flow is not a collection of fixed points—flow is a dynamic space. 
If a student works on something, their abilities will increase (see 
Figure 9.2), and in order to keep them from getting bored we must 
increase their challenge. And then their ability will increase and, 
eventually, the challenge will need to be increased again. And so 
on. In essence, when students are in flow, their ability will always be 
increasing, and in order to keep them in flow we, as teachers, have to 
keep increasing the challenge by giving them extensions—harder and 
harder tasks to solve.

To build a thinking 
classroom we need 

to be able to get 
students into, and 
keep them in, flow.
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Figure 9.2 Graphical representation of the balance between challenge 
and skill as a dynamic process.

This sounds simple enough. And, in fact, it sounds an awful 
lot like what we already do. The problem is—timing matters. 
If we increase the challenge of a task before a student has 
had the chance to fully grow their ability, then, rather than 
keeping them in flow, we have pushed them into frustration 
(see Figure 9.3). Likewise, if we wait too long to increase the 
challenge, we push them into boredom (see Figure 9.4). The 
timing matters.

To keep 
students in flow, 
timing matters.

Figure 9.3 Too great an increase in challenge.
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Figure 9.4 Too long a wait without an increase in challenge.

So, if we manage to get our students into flow, giving them extensions 
synchronously will not work. We have to work asynchronously—we 
have to get the timing right for each student. If students are working 
individually in their seats, this is almost impossible. Fortunately, 
thinking classrooms have two things that make this easier. First, 
students are working in random groups. This reduces what we need 
to manage asynchronously from 20–30 students to 7–10 groups. 
Second, students work on vertical non-permanent surfaces. This 
makes it easier to observe where groups are in their thinking and 
makes it easier for us to get the timing right.

Aside from maintaining the balance between ability and challenge, 
we also have to remember that Csíkszentmihályi found two other 
environmental conditions for the optimal experience to occur—clear 
goals every step of the way and immediate feedback on action. When 
we combine these three conditions together, we can begin to see why 
the jellybeans (Chapter 4), tax collector (Chapter 6), and birthday 
cake (Chapter 8) tasks worked so well with our students. Each of these 
tasks has a clear goal, and each of these tasks offers the possibility of 
immediate feedback on action. In fact, for the jellybeans and birthday 
cake tasks, the feedback is provided by the task itself—the solution 
either worked or it didn’t. Finally, each of these tasks offers us the 
ability to increase the challenge as students complete a level.

These same principles can be applied to the idea of curricular 
thinking tasks introduced in Chapter 1. Let’s look at some examples 
from different grade levels.
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First, consider a task used with high school students that began with 
the following script:

Teacher Let’s start with a bit of review. How would I expand  
( x + 2 ) ( x + 3 )?

 [Teacher writes on the board ( x + 2 ) ( x + 3 ) =]

Students x2 + 5x + 6.

 [Teacher writes on the board ( x + 2 ) ( x + 3 ) 
=x2 + 5x + 6]

Teacher Ok. So what if my answer was x2 + 7x + 6? What would 
the question be?

 [Teacher writes on the board( ) ( ) = x2 + 7x + 6.]

This task already has a clear goal—figure out what the two binomials 
are that, when multiplied, will produce the desired trinomial. Also, by 
the fact that students can use distribution to check their answer, this 
task has the ability to provide immediate feedback on actions. All that 
is missing are the extensions—the ability to increase the challenge as 
a group’s ability increases. Consider the following sequence of such 
extensions:
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This sequence was created using two main principles of variation 
theory (Marton & Tsui, 2004). The first principle is that we can only 
see variation against a backdrop of non-variation. That is, that before 
something changes, it has to stay the same. We see this in the transition 
from Task 4 to Task 5. Prior to making the third coefficient negative, 
we kept it positive for four tasks. The second principle is that only 
one thing is varied at a time. So, although Task 14 is far from Task 1, 
at every stage only one thing was varied. First, we varied the number 
of factors that the third coefficient provided. Then we made the third 
coefficient negative; then the second coefficient became negative. 
And so on. Although inspired by variation theory, this is very similar 
to the idea of number strings (Fosnot & Dolk, 2002).

When we have used this sequence, or one similar to it, with Grade 
10 students, we get through the entire sequence in 40–60 minutes. 
That is, depending on the curriculum, we are able to cover the entire 
factoring quadratics unit in one lesson. How is this possible? The 
short answer is that when students are not thinking, everything we 
teach them is difficult. When students are thinking, however, almost 
anything is possible. When students are thinking, they are learning 
and understanding—and this transfers to success.

This is where you start to earn back the time 
you spent doing non-curricular thinking 
tasks. To be clear, this is not something 
that can be done on Day 1 of starting to 
build thinking classrooms. But once your 
students are thinking—both individually 
and collaboratively—a sequence such as 
this, used asynchronously to maintain the 
balance between ability and challenge, allows 
you to cover a huge amount of content in a 
single lesson.

Let’s look at another script and sequence of tasks that can be used to 
teach one- and two-step solving of algebraic equations at the middle 
school level.

Teacher We are going to play a game of guess what’s in my 
head. I’m going to think of a number, and you are 
going to guess what it is. To help you make the guess, 
I will give you exactly one hint.

Teacher OK—I have my number. Here is your hint—if I add three 
to my number the answer is 12. Thumbs up if you 
know my number.

Once your students are 
thinking—both individually 

and collaboratively—a 
sequence such as this, used 
asynchronously to maintain 
the balance between ability 
and challenge, allows you 
to cover a huge amount of 
content in a single lesson.
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Students [Students put up their thumbs.]

Teacher [When enough thumbs are up, the teacher calls on 
the students.] OK—what is my number?

Students 9.

Teacher Great. OK—I have a new number. Here is your hint—if I 
double it and add three my answer is 15. Thumbs up if 
you know my number.

Students [Students put up their thumbs.]

Teacher [When enough thumbs are up, the teacher calls on 
the students.] OK—what is my number?

Students 6.

Teacher OK. Before I give you the next one, we have to learn 
how to write what I just said. [Teacher writes on the 
board:  × 2 + 3 = 15.]

Teacher And before I give you the next one, there are three 
rules to this task.

1. You can use a calculator.

2. If you use a calculator, you must write down on 
the whiteboard what you type into the calculator.

3. You have to check your answer by putting it back 
into the calculator.

Teacher  Here is your next one:  + 3.014 = 7.22. [Teacher 
randomizes the groups and sends them off to work.]

1.  + 3.014 = 7.22

2.  – 15.1 = 7.88

3.  × 4.25 = 24.8

4.  ÷ 1.356 = 4.02

5.  × 2.5 + 3.67 = 18.3

6. and so on

This sequence, like those before it, adheres to the two principles of 
variation theory—variation can only be seen against a backdrop of 
non-variation, and only one element should be varied at a time. We 
have used this exact script and a similar sequence to move through 
all of solving one- and two-step equations in a single lesson. In fact, 
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I have personally taken a thinking Grade 5 class 
through this script and sequence in 35 minutes, 
by the end of which every group was solving 
tasks as complex as  ÷ 15.3 – 8.27 = 3.01. In 
our research we have been able to recreate these 
results hundreds of times. And every time we 
move through huge amounts of content in a 
single lesson. This is not to say that every group 
gets equally far, but every group gets to the point 

where they are solving two-step equations, or factoring quadratics 
where the leading coefficient is greater than one. The groups that 
get there sooner are given increasingly harder and harder questions 
beyond this to keep them in flow while the rest of the groups catch up.

Now, consider a sequence, adapted from the unusual baker task 
(NCTM, 2012), that can be used in an upper elementary classroom 
on the topic of fractions. The premise is that the baker cuts their cakes 
in different ways every day (see Figure 9.5). What fraction of the cake 
is each piece?

We have used this exact 
script and a similar 
sequence to move 

through all of solving one- 
and two-step equations in 

a single lesson.

Figure 9.5 The unusual baker’s cakes.

1. 6.

2. 7.

3. 8.

4. 9.

5. 10.
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For a primary sequence, consider 
the following tasks, where 
students are asked to find the next 
three terms of a number pattern:

Each of the sequences of curriculum tasks 
has another quality that is common among 
them—the increase in challenge from one task 
to the next is incrementally small. In other 
words, we are just pushing the envelope a little 
bit in each step, which helps keep students in 
flow and reduces the chance of pushing them 
into frustration by making cognitive leaps too 
challenging. I refer to such sequences as thin 
slicing (see Figure 9.6). Thin slicing sequences 
stand in contrast to the thick slicing sequence we see in thinking tasks 
such as tax collector (Chapter 6), ice cream cones (Chapter 5) and 
wine chest (Chapter 5), where the increase in challenge from one part 
of the task to the next is much greater (see Figure 9.2).

Each of the sequences of 
these curriculum tasks 

has another quality that is 
common among them—
the increase in challenge 
from one task to the next 

is incrementally small.

Figure 9.6 Thin slicing sequence of tasks.
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As mentioned, the benefit of thin slicing sequences 
of thinking tasks is that it helps avoid frustration. 
The drawback is that groups can move through the 
tasks very quickly, putting an extreme pressure on 
you to get to groups that are done before they get 
bored (see Figure 9.4). In the algebra sequence seen 
earlier, I have seen groups dispense with one task 
every three to four minutes. If there are 10 groups 
in the room, getting to each group in time becomes 
impossible, and groups will start getting bored—
unless you have mobilized the knowledge in the 
room (Chapter 8). Once that happens, students 
begin to use the autonomy afforded them to keep 
themselves in flow by stealing the next tasks from 

groups around them—essentially increasing the challenge of the tasks 
on their own. You can help make this easier by setting a rule that 
whatever task they are currently working on needs to be written at 
the top of whatever vertical surface they are working on—thereby 
making it easier for others to steal.

When I ran the algebra sequence with that group of fifth graders, I 
gave out each task to only one or two groups. The rest of the groups 
got their next task by stealing it from others—when they were ready 
for it and to keep themselves in flow. This frees the teacher up to 
spend more time attending to the groups for whom, despite your best 
efforts, there is an imbalance between their ability and the challenge 
of the task, and they start to head for frustration (see Figure 9.3). This 
will happen. And when it does, we need to intervene by giving a hint.

Using Hints to Maintain Flow

It turns out that there are two types of hints—hints that 
decrease challenge and hints that increase ability (see 
Figure 9.7). The first of these is quicker to give, and either 
requires you to give a partial answer to the question 
students are working on or shift them to an easier task. 
The second type of hint—increase ability—takes longer 
and requires you to either remind them of a strategy or 
give them a strategy. Other than how long it takes to give 

these hints, the main difference is that hints that decrease challenge 
are only useful in that moment, whereas a hint that increases ability 
continues to be useful even as students move on to the next task.

The benefit of thin 
slicing sequences of 

thinking tasks is that it 
helps avoid frustration.

There are two types 
of hints—hints that 

decrease challenge 
and hints that 

increase ability.
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For example, if the factoring quadratic sequence is used, you will 
eventually get some groups working on 6x2 + 13x + 5. If a group is 
struggling with this one, you can tell them that the first term in the 
binomials will be 2x and 3x, or write (2x + ) (3x + ) on the board for 
them. This is an example of a hint that reduces challenge. Alternatively, 
you can ask them to tell you how they think about the last term in the 
trinomial (5). When they tell you that that term is the product of the 
second terms in the binomials, you can either smile and walk away, 
or you can mention that maybe they should use that same thinking 
to consider the leading coefficient in the trinomial. This hint takes 
longer, but it mobilizes and repurposes knowledge they already 
have—it is an example of a hint that increases ability.

Figure 9.7 Two types of hints.

Obviously, hints that increase ability are better in the long run. But 
frustration is not about the long run. Frustration is an intensely 
negative emotion that needs a rapid intervention, and sometimes the 
best way to intervene quickly is to reduce the challenge. Of course, 
the imbalance can be tipped in the other direction as well—the ability 
of the group exceeds the challenge of the tasks, and they start to head 
for boredom. The obvious thing to do in these situations is to increase 
the challenge of the task (see Figure 9.8). This is, in essence, the same 
as using extensions to maintain flow (see previous section).
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Using Shifts in the Mode of Engagement to 
Maintain Flow

There is one more way to regain the balance between 
the ability of the group and the challenge of the task at 
hand. Rather than shift the task the group is working 
on, we shift their mode of engagement with the same 
task (see Figure 9.9). For example, when students are 
solving a task, their mode of engagement is doing—
they are doing the task. This is the easiest way to engage 
with a task. If I tell a group that has finished that they 
are wrong, or ask them if they would bet $100 on their 

answer and then walk away, I just shifted their mode of engagement 
from doing to justifying. Justifying is more challenging and involves 
students convincing themselves that they are correct. When they are 
convinced and call me back to tell me they are correct, I may ask 
them to explain to me how they know they are correct. Explaining is 
harder than justifying, as it requires the articulation of thought for an 
audience outside of those who did the original thinking. The group 
will likely not be good at explaining the first time around, so I may 
tell them to come get me when they can explain to me in a way that 
I understand. When this happens and they do a good job explaining, 
I may point them toward another group and ask them to help that 
group by teaching them something. If we subscribe to the notion that 
teaching is different than telling or explaining, then this is another 

Figure 9.8 Increase the challenge.

Rather than shift 
the task the group 
is working on, we 

shift their mode of 
engagement with 

the same task.
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increase in challenge. Once the group has finished teaching, I may 
ask them to create a new task for that group. Creating is the most 
difficult mode of engagement, as it requires the group to not only 
see the didactics of the situation, but also the pedagogical needs and 
affordances of the next task.

The goal of building 
thinking classrooms is 
not to find engaging 
tasks for students to 
think about. The goal 

of thinking classrooms 
is to build engaged 

students that are willing 
to think about any task.

Figure 9.9 Modes of engagement that increase challenge.

My research showed that this sequence of modes of engagement—
doing, justifying, explaining, teaching, creating—not only increases 
challenge, but does so in a way that can continue to engage, or 
reengage, even the strongest group. It also explains why students often 
have a difficult time explaining their thinking—we are asking them 
to go straight from doing to explaining. We need to first ask them to 
justify their thinking.

The bottom line with all of this is that the goal 
of building thinking classrooms is not to find 
engaging tasks for students to think about. The 
goal of thinking classrooms is to build engaged 
students that are willing to think about any task. 
We achieve this through using thinking tasks 
(Chapter 1), visibly random groups (Chapter 2), 
and vertical non-permanent surfaces (Chapter 3); 
defronting the room (Chapter  4); answering only 
keep-thinking questions (Chapter  5); giving tasks 
verbally, early, with the students clustered around 
(Chapter 6); giving check-your-understanding 
questions (Chapter 7); and mobilizing the knowledge in the room 
(Chapter 8). Once we have this, we can point the thinking classroom 
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at curriculum. Because curriculum tasks are not innately engaging for 
students, we need to manufacture engagement through giving clear 
goals, ensuring there is an ability to get immediate feedback on actions, 
and asynchronously maintaining the balance between the group’s 
ability and the challenge of the task at hand through the use of hints and 
extensions (see Figure 9.10). When we do this, not only do we make 
curriculum tasks more engaging, but we also create the possibility of 
covering a large amount of curriculum in a short amount of time.

If this is so effective, should I be doing this every day?

Yes and no. No because you cannot start the school year like this. 
You need to begin by using highly engaging non-curricular 

thinking tasks to build the culture of thinking in your classroom. 
Non-curricular tasks are also good to use whenever you introduce a 
new thinking practice into your classroom—this is why every previous 
chapter ends with one. For the rest of the time, the answer is yes. If 
you want your students to be thinking they need to be engaged. And 
for them to be engaged they need to be in flow. This chapter outlines 
the best way we have found to keep students in flow while working on 
curricular content.

In all the sample examples that were provided in this chapter, the 
first tasks students were asked to solve was very easy. Doesn’t this 

risk them becoming bored?

Figure 9.10 Students in flow on curricular tasks.
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If the students are relying on you to get to them before they can 
go on to a more challenging task, then yes. But if they are stealing 

tasks from others, then this is not an issue. On the positive side, 
starting with a very easy task increases the chances that all groups will 
be able to start.

A lot of topics we teach draw on students’ prior knowledge. But 
sometimes we teach topics that are brand new to the students. 

Normally this requires a long lecture to orient them toward the topic 
and teach them how to do the tasks that are coming. How do we deal 
with these situations inside of the thinking classroom framework?

Prior to reading this chapter, many teachers would say exactly 
the same thing about both solving one- and two-step equations 

and factoring quadratics. Yet, neither of these needed a long 
introduction to teach students how to do it. As teachers, we often 
design our lessons to prepare students to answer the hardest task they 
will face. When using flow, our teaching needs only to prepare them 
to answer the first task they will face and then count on the fact that 
they will learn something during that task that will help them with 
the next task. This does not mean that you can’t just tell them 
something to get them started, but based on the results from Chapter 6, 
you have a maximum of five minutes to do it. In the Chapter 1 FAQ,  
I gave an example of a script for introducing the Pythagorean Theorem 
in less than five minutes.

Also, do not forget that while students are working their way through 
the sequence of tasks, you are still in the room. The instruction you 
would normally give at the beginning of the lesson can now become 
hints that you use when needed to keep groups moving further up the 
flow channel.

Knowledge mobility aside, wouldn’t it just be easier to give each 
group the list of tasks they need to work through?

We thought so too at first. But repeated attempts at making this 
work always produced the same result—a dramatic shift from 

trying to learn from the solving of the tasks toward just get it done. 
That is, the students stopped caring about being in the moment and 
making sure that everyone in the group understood. Instead, the list 
provided a finish line, and they wanted to get across it as fast as 
possible. So, usually the strongest member of the group just took the 
marker, and off they went.
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Incidentally, we saw the same results when we allowed groups to sit 
down when they had finished our sequence of tasks. The fact that 
groups got to be finished indicated there was a finish line, and the 
race was on. In addition, groups who did not finish began to feel 
anxious about their work and the fact that they were still standing 
when others had gotten to sit down.

One of the elements needed in order to make flow work is 
immediate feedback on action. The factoring and algebra 

examples you gave have this built in, but what do I do when the task 
does not provide that sort of feedback?

The task is not the only, or even best, source of feedback available 
to students. The best sources of feedback come from within the 

group and from the groups around them. Multiple minds thinking 
together about the same task often provide all of the feedback that is 
needed as they check their own work. Another source of feedback in 
the room is you, as the teacher. However, there is a delicate line 
between providing feedback and answering stop-thinking questions. 
As mentioned in Chapter 5, an easy way to avoid falling onto the 
wrong side of that line is to enter a group with questions rather than 
answers—“Why did you do that?” “Can you tell me what you are 
doing here?”

The explanation of flow is very clear—for an individual. But a 
group is not a single entity. It is made up of three individuals, all 

of whom are unique. How can we guarantee that they are all in the 
same place on this graph?

Students are all unique and, as a result, there is 
a strong chance that each student is in a different 

place on the graph. But a group is more than a 
collection of individuals—it is a collective. And 
when a collective is working on something new, they 
often merge into one entity. Take the example of 
factoring quadratics. This is a new topic to students. 
When we watch groups work on this, we often 
observe students of varying abilities coming together 
in a group and performing as one—completing each 
other’s thoughts and moving forward with synergy.

Of course, this does not always happen, and there may be a student 
who is falling behind the rest of the group. Sometimes it is two students 
falling behind a single student who has already built understanding 

A group is more 
than a collection of 
individuals—it is a 

collective. And when 
a collective is working 

on something new, 
they often merge into 

one entity.
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and is wanting to storm ahead. In these circumstances you simply 
give the marker to the student who is falling behind and make it clear 
to the stronger student that the group does not get to move to the next 
task until everyone in the group understands what is happening on 
the current task. Careful questioning on your part can verify whether 
this is true.

If there is a student who is operating well above the rest of the group 
and wants to teach by telling, then have a private conversation with 
that individual about the different modes of engagement and how you 
are challenging them to teach rather than do. Alternatively, if there is a 
student operating well behind the rest of the class, then working with 
that student in the period before to prepare them for the coming task 
is helpful in making them a relevant member of the group. We call 
this preloading.

What if a group struggles on one of the tasks in the sequence, but 
eventually answers it? Do I still give them the next task?

No, if a group is struggling, then the next task they get is similar 
to the one they just completed. The completion of a task does not 

necessarily mean that their ability has grown as much as it can. 
Another task at the same challenge level will allow their ability to 
grow more before the challenge increases. What this means is that 
you need to enter the lesson not just with a single sequence of 
progressively more challenging questions, but also a sequence of 
parallel tasks of comparable challenge level.

I have noticed that sometimes a group is working on a task that is 
too hard or too easy for them, but they still manage to stay in 

flow. What is that about?

It turns out that Figure 9.1 is incomplete. My research on building 
thinking classrooms revealed that there are actually two more 

regions in the flow diagram—perseverance and patience (Liljedahl, 
2018). The regions act as buffers between flow and frustration and 
flow and boredom (see Figure 9.11) and allow groups to operate out 
of balance without disengaging from the task. This gives groups time 
to autonomously pull themselves back into flow by looking to the 
groups around them for a hint or an extension.
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I feel like my students currently don’t have any perseverance or 
patience. How do I increase this?

Both of these increase from repeated opportunities to work in 
flow. This is another reason why it is so important to use highly 

engaging non-curricular thinking tasks when you begin to build a 
thinking classroom—and occasionally thereafter.

You mentioned how important it is to have a carefully constructed 
sequence of tasks. At the same time, you mentioned that we 

should rely on students’ autonomy to steal the next task. What if 
students pick the tasks out of sequence? Doesn’t that mess up 
their flow?

In the beginning it is very important that the sequence of tasks is 
maintained. But as students’ perseverance and patience increases, 

the sequence becomes less critical as the groups become more able to 
cope with imbalances between their ability and the challenge of the 
task at hand.

Where can I get such sequence of tasks with progressively 
increasing challenge along with parallel tasks?

The lists of exercises in textbooks are, for the most part, designed 
in exactly this way. But be critical. Textbook exercises are designed 

for practice and not thinking and learning. So, they do not always 

Figure 9.11 Perseverance and patience.
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Figure 9.12 Sequence of curricular concepts that can be used to build 
a flow sequence of tasks in calculus.

adhere to the ideas of variation discussed earlier. 
But, don’t underestimate your own ability to make 
such a sequence. Teachers who are teaching a 
curriculum that they are familiar with (see 
Figure  9.12) can sit down and create these 
sequences for themselves without much effort. 
Regardless, go into the lesson with a longer 
sequence than you think you will need. It is better 
to not complete a sequence than it is to have your 
students shoot through your planning in the first 
six minutes—which has happened many times.

Teachers who are 
teaching a curriculum 
that they are familiar 

with can sit down and 
create these sequences 
for themselves without 

much effort.

You began this chapter by talking about differentiation. 
Differentiation is normally seen as providing students with 

different tasks and activities based on their abilities. Does your use of 
flow put forward a different way to operationalize differentiation?
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Yes. In this framework every group starts in 
the same place—with the same task. What is 

differentiated, then, becomes more about the 
timing and pacing that each group moves 
through the sequence of tasks. However, as in all 
forms of differentiation, the teacher plays a vital 
role in this process, deciding when a group needs 
a hint or an extension, or to maybe do another 
task of the same challenge. This differs from the 
more conventional idea of differentiation in that 
it is based on the in-the-moment information 

about how a group, and the individuals in that group, are performing 
rather than the preconsidered anticipations, expectations, and 
sometimes even assumptions or biases about how they may perform.

As in all forms of 
differentiation, the 

teacher plays a vital role 
in this process, deciding 
when a group needs a 

hint or an extension, or to 
maybe do another task of 

the same challenge.

Summary
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Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. Pick a topic that you have just finished teaching, and try to 
build a sequence of incrementally more challenging tasks 
that cuts through a part, or all, of the topic.

3. Now do the same thing for the next topic you will 
be teaching.

4. Think about a topic that you believe is brand new to students. 
What is the minimum set of instructions that you need to 
give in order to prepare students to be able to think their way 
through the first task you would ask them to do? What can 
students learn from this first task?

5. Do you think your students have developed the autonomy 
they need to allow them to help themselves to stay in flow? If 
not, reread Chapter 8, and think about how you can continue 
to further their growth in this area. This does not mean you 
can’t start to play with creating and maintaining flow. Flow 
is a great context in which to keep working on mobilizing 
knowledge to build students’ autonomy.

6. Have you seen instances where your groups exhibit 
tremendous perseverance or patience while working in a 
thinking classroom setting? If so, could they have done this 
at the beginning of the school year?

7. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?
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Try This
The following sequences of highly engaging non-curricular 
thinking tasks have been shown to easily put students into, and keep 
them in, flow.

Grades K–3: The Answers Are

Using each of the numbers from 1 to 10 exactly once and each of the 
operations + and – at least twice (one will be used three times), make 
five expressions whose answers are 17, 17, 8, 1, 2. An expression, in 
this case, is defined as two numbers and an operation. A possible 
script for introducing this task is:

Teacher Today we are going to build some expressions. Each 
expression is made up of two numbers from this list 
[teacher points at list of numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10] and one of these operations. [Teacher points at 
list of operations + + – –.] Can someone please tell me 
an expression?

Student 8 + 1.

Teacher OK. The answer for this is 9. [Teacher writes 8 + 1 = 9.] I 
forgot to mention that now the 8 and the 1 and one of 
the + is now gone. [Teacher crosses these out on the 
board.] Can someone give me another expression?

Student 10 – 1.

 [. . . and so on]

Teacher Ok. So now we have run out of operations, but we still 
have two more numbers [Teacher points at the 3 and 
the 2.] So, let’s make one more expression, and you 
can use one of the operations + or – a third time.

Student 3 – 2.

Teacher OK. [Teacher writes 3 – 2 = 1.] We now have five 
expressions [teacher points at the five expressions] 
and five answers [teacher points at the five answers]. 
And these answers came from following two rules. 
We had to use every number from 1 to 10 exactly 
once, and we had to use addition and subtraction 
each at least twice. And if we follow these rules, we 
will get five answers. So, if we know these rules and 
all we had were these answers [teacher erases the 
expressions leaving just the answers], could we figure 
out what the expressions were? And, of course, these 
are not the answers I care about. [Teacher erases 
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the answers.] These are the answers I care about. 
[Teacher writes 17, 17, 8, 1, 2 on the board.]

 [Teacher makes random groups]

The sequence of answers that follows is

13, 9, 13, 1, 13

13, 1, 9, 1, 17

15, 1, 1, 1, 19

2, 2, 7, 7, 7

2, 2, 2, 3, 8

3, 3, 3, 3, 19

Grades 4–12: The Answers Are

Using each of the numbers from 1 to 10 exactly once and each of the 
operations +, −, ×, and ÷ at least once (one will be used twice), make 
five expressions whose answers are 5, 8, 13, 24, 20. An expression, in 
this case, is defined as two numbers and an operation. The sequence 
of answers that follows is

17, 2, 21, 3, 2

10, 14, 1, 20, 16

3, 3, 3, 3, 24

2, 2, 2, 2, 9

2, 3, 7, 7, 7

1, 2, 3, 4, 5

A possible script for introducing this task can be made by modifying 
the script above.



CHAPTER 10
HOW WE CONSOLIDATE A LESSON  

IN A THINKING CLASSROOM
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Consolidation is an important part of every lesson. Through 
consolidation we are able to bring together the disparate parts of a 
lesson and help students to reify their experiences into a cohesive 
conceptual whole. But what does this look like in a thinking 
classroom, where the effort to keep groups in flow is more important 
than keeping all the groups together, and where student autonomy 
allows groups to solve tasks in very different ways? In this chapter 
you will learn what consolidation needs to look like in a thinking 
classroom, not only from the perspective of pulling a wide variety of 
student work together, but also how to do so while keeping thinking 
as a central focus.

The Issue
When I spent time visiting those 40 classrooms at the 
outset of my research, I saw a lot of consolidation. 

Typically, it occurred after a now-you-try-one task. Sometimes this 
consolidation would involve students sharing their solution, but more 
often than not it involved the teacher going through the solution, 
step-by-step on the board. In the introduction, you learned how this 
rhythm of giving a now-you-try-one task, waiting (4 minutes and 
22  seconds), and then going over it enabled—nay, encouraged—
students to stall or fake in anticipation of not only getting the answer, 
but getting the best answer from the teacher.

For the most part, consolidation after a now-you-try-one task 
consisted of what Alan Schoenfeld calls leveling to the top (1985). 
What this means is that, irrespective of where students are in their 
thinking or their solution process, the teacher goes over the most 
advanced and most nuanced aspects of the solution. They do so in 
the belief that in order to be able to do the next now-you-try-one task, 
students need to know how to do this one, and if they have not gotten 
it after 4:22, we will just give it to them so they are ready to move 
on to the next task. In essence, we level to the top in an effort to lift 
everyone up to the top.

The Problem
The problem is that it doesn’t work. Unless a student is 
close to the answer in their thinking, then a leveling to 
the top is too big a cognitive jump for them to take. And 

the result is the exact opposite of what we were hoping for—rather 
than preparing the students for the next task, they are actually less 

To reify: is to 
make concrete and 

real something 
that is abstract or 

intangible.
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prepared for it and are even less likely to be able to 
solve it. If all students could learn by having us just 
tell them how to do it, we would not have any of the 
problems that we have in mathematics education 
today. For over one hundred years the dominant 
pedagogy was teaching through telling. If that 
had worked, then all students would have been in 
our highest streams, and all students would have 
gotten the highest marks. But that has not been 
the result. Student difficulty with mathematics 

has been a pervasive and systemic problem since the advent of 
public education—not because students can’t learn mathematics, but 
because, by and large, students can’t learn by being told how to do it.

More specifically related to thinking, I also noted 
that when teachers leveled to the top, this became 
a non-thinking activity both for the students who 
had already gotten there and for the students who 
were not even close. For this latter group, rather 
than thinking, this simply became a mindless note-
taking exercise. I’ll discuss this more in Chapter 
11, but for now I can say that students began to 
mistake being shown how to do it for learning, 

and they mistook having it in their notes for knowledge. This came 
through in classroom observations and student interviews over and 
over again. If you have been implementing the thinking classroom 
in concert with reading this book, it has likely come through in your 
experiences as well. When students ask, “When are you just going 
to go back to teaching us math?” what they are really asking is when 
are you going back to telling (showing) us how to do it so we can just 
write it down in our notes.

Toward a  
Thinking Classroom

So, if leveling to the top does not work, what would be the effect of 
leveling to the bottom? And what, exactly, would that look like? This 
is exactly what we began experimenting with. Our starting point 
came from the idea that if leveling to the top is about presenting a 
solution of where we want all students to get to, then consolidating 
from the bottom must start with the presentation of solutions that 
all students got to. That is, the consolidation follows the same path 
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as the extensions of increasingly challenging tasks that 
were used to create and maintain flow while the students 
worked through the task(s).

If this were a non-curricular task such as the gold chain 
task (see Chapter 4), then we might start by discussing 
what a solution looks like if we cut every second link. This 
is a point that every group starts at, and it turns out to not 
lead to a viable solution. From there we may discuss the 
solution where we cut every third link and use the intact two-link 
segments to pay for both the room and the cut on the days that a cut 
is made. With your use of hints, every group would have gotten to this 
solution. This is followed by a discussion of a solution where we start 
getting change for our gold links. So, for example, if on a certain day 
we owe two links of gold, we pay with a length of four links and get 
two single links as change. So, rather than starting the consolidation 
with the change model—the model we want all students to get to—we 
started the consolidation with the solution that every group did first.

If it is a set of curricular tasks, such as the factoring quadratics 
sequence of tasks (Chapter 9), then the consolidation would start 
with how to factor quadratics where all the coefficients are positive 
and the leading coefficient is one—something all groups would have 
been able to do. From here we would discuss how to factor quadratics 
where the last coefficient is negative, and so on. For the unusual baker 
sequence of tasks (Chapter 9), you would begin by reviewing the first 
two tasks (see Figure 10.1). This will allow you to reemphasize the 
importance of the number of pieces as well as the relative sizes of the 
pieces when trying to determine what fraction of the whole cake each 
piece is. From there you would jump to the fourth and fifth cakes, for 
which you would review the addition of extra lines for the purpose of 
creating equal-size pieces, and so on. 

When we began to experiment with this consolidation technique, 
we immediately noticed that rather than disengaging during 
consolidation, all students were with us from the beginning, and 
more students stayed engaged. For the students who stayed engaged, 
consolidation stopped being an extension of the lecture where worked 
examples are demonstrated. Instead, it started becoming a reifying 
activity where their ideas were valued and expanded on. In this way, 
more thinking, and thus more learning, was occurring. Things were 
sticking better.

Consolidating 
from the bottom 

must start with the 
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Figure 10.1 The unusual baker’s cakes.

There are three ways in which consolidation from the bottom can 
take place:

1. The teacher leads a general discussion about the task(s) and 
solution(s) but writes nothing down.

1. 6.

2. 7.

3. 8.

4. 9.

5. 10.
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2. The teacher leads a detailed discussion of the task(s) and 
solution(s) while recording on the board what is being 
discussed.

3. The teacher leads a detailed discussion of the task(s) and 
solution(s) using student work on the vertical surfaces to 
work through the different layers of the solution.

The first of these methods is most useful when talking about big ideas 
and general strategies that have emerged out of the student activity. 
For example, the tax collector task (Chapter 6) can be consolidated in 
this way as the class discusses the strategies for choosing the first and 
second envelopes. The second method is suitable when more detail 
is required—such as when consolidating ideas around how to add 
two-digit numbers or when completing the square. To be clear, both 
the first and second methods are not lectures where the teacher does 
most of the talking. They are discussions where the teacher asks very 
focused questions and the students contribute ideas—ideas that are 
reified and formalized through the teacher’s reframing of things that 
are being offered by the students. The difference between the two is 
that the teacher records these ideas in the second method, whereas 

Source: Photo courtesy of Judy Larsen. Used with permission.
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in the first, the ideas exist only as a discussion. The third method, 
which turned out to be the most effective method for maintaining 
engagement, is used in the same circumstances as the second method, 
but rather than having the teacher write on the board, the existing 
work of students is used to demonstrate the details.

Regardless of the method teachers used, they helped us find some 
refinements that drastically increased student thinking during 
the consolidation process. For example, we found that having the 
students standing in a loose cluster around the teacher significantly 
increased attention and engagement during the consolidation 
process. In one instance we repeated the study discussed in Chapter 6, 
where we simply documented students looking at their cell phones 
during consolidation. In the lesson where the students sat during 
consolidation, almost 50% of the students looked at their cell phones 
for more than 50% of the time. When these same students were 
standing during the consolidation, only one student looked at their cell 
phone, and then only for 30 seconds. It turns out that having students 
stand generates more engagement both when being introduced to the 
task (Chapter 6) and when debriefing the task.

Another refinement that made a big difference in student engagement 
has to do with how much time students spend at each level of the 
task or task sequence. When leveling to the top, 100% of the time is 
spent on the solution or method that the teacher wants the students 
to ultimately reach. When consolidating from the bottom, there is 
a gradual movement through each level of the task, with more time 
spent at the first level, and then a decreasing amount of time spent on 
each successive level until the highest level is just barely touched on. 
In essence, as you move through the different challenge levels of the 
flow diagram, you spend less and less time focusing on the processes 
at each level (see Figure 10.2).

Figure 10.2 Time spent consolidating as challenge increases.
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What this does is allow more students to stay with the discussion 
longer, as the teacher is going over aspects of the tasks that more 
students were able to do. For example, consider the following flow 
sequence for adding two-digit numbers:

1. 10 + 10 =

2. 11 + 10 =

3. 14 + 10 =

4. 14 + 20 =

5. 17 + 20 =

6. 33 + 20 =

7. 24 + 50 =

8. 24 + 51 =

9. 24 + 52 =

10. 24 + 57 =

11. . . .

Spending time discussing and reifying some of the foundational 
aspects of adding 10s that emerge out of the first three questions 
allows every student to participate in the discussion. As the tasks get 
more nuanced and fewer students have been able to complete them, 
you spend less time focusing on them, until you get to the most 
advanced tasks, when you may say something like this:

Teacher And this idea of adding 10s doesn’t change, no matter 
what the 1s are. But, when the 1s add to more than 10, 
we will have to rethink how many 10s there are.

As mentioned, consolidating through the use of student work 
(Method 3) was the most effective at creating and maintaining 
student engagement. This method is often referred to as a gallery 
walk. In a gallery walk, rather than the work to be discussed coming 
to the students as in the first two methods, here the students literally 
walk to the work to be discussed. With this method, too, we found 
refinements that increased both engagement and the amount of 
time students spent thinking. The first and most impactful of these 
refinements was the realization that when students spoke to the whole 
class about their own solutions, very few, if any, of the other students 
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listened. This was such a shocking result that we sought to verify it 
in contexts other than consolidation—even contexts outside of the 
thinking classroom research. What we found was that during whole-
class discussion, unless there is a punitive structure in place forcing 
students to listen attentively to other students’ presentations of their 
solutions, very few students did.

Our fix was that when discussing student work, we ask other members 
of the class to try to explain what the group was thinking whose work 
we were discussing.

Teacher Can someone NOT in this group tell me what this group 
was doing here? [Teacher points at a specific part of 
the board.]

Teacher Talk amongst yourselves to see if you can figure it out.

This approach created a space where students had to try to merge what 
they were seeing in the written traces of a group’s thinking with their 
own thinking about the same task. Coupling this with opportunities 
to discuss this mergence in small groups created a space that not 

only asked them to think, but necessitated thinking. 
In comparison to simply having the group that 
produced the work explain the work, this approach 
changes consolidation from telling to thinking—
from passively receiving knowledge to actively 
thinking about the work at hand. And it positions 
knowledge as tentative, negotiable, and fallible rather 
than absolute, definitive, and accurate—a positioning 
that offers more space for thinking to happen.

Another refinement that increased thinking and engagement came 
from the careful selection and sequencing of what students would 
attend to during the consolidation. The gallery walk was not a random 
walk but a focused guided tour through the different levels of the flow 
sequence. Prior to the consolidation, the teacher not only carefully 
selected and sequenced the vertical surfaces they would take the 

students to, but also chose in advance what parts of a group’s 
work they would attend to when visiting that work. This, 
coupled with the focused questions and reifying language, 
allowed the teacher to build a cohesive narrative through the 
consolidation as they took the students through the increasing 
challenges of the flow sequence of the task or tasks. This 

refinement also provided a further insight into why having students 
present their own solutions was ineffective—they would distort the 
narrative that the teacher was trying to build.

Rather than 
explaining one’s 

own work, trying to 
decode someone 

else’s work changes 
consolidation from 
telling to thinking.
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This selecting and sequencing is both similar to and different from 
Smith and Stein’s (2011) notion of selecting and sequencing. They 
are similar in that they both try to achieve a sensible sequence that 
moves the learners through various ways of thinking about a task 
or tasks. The difference is that, whereas Smith and Stein do both 
the selecting and sequencing in the moment, within a thinking 
classroom, the sequencing has already been determined within the 
task creation phase—created to invoke and maintain flow. What is left 
to do is to select the student work that exemplifies the mathematics 
at the different stages of this sequence. Another difference is that, 
whereas Smith and Stein have students present their own work, in the 
thinking classroom the decoding of students’ work is left to the others 
in the room.

The final refinement that increased student engagement 
was to keep the students moving. That is, selecting vertical 
surfaces in a sequence that required students to walk to 
different parts of the room was more effective for maintaining 
student engagement. In essence, the gallery walk needed to 
be a gallery walk. The more steps the better.

Given the effectiveness of the guided gallery walk in maintaining 
student engagement and necessitating student thinking, this should 
be the most frequently used method of consolidation. This is not to 
say that the other two methods are ineffective, but they should be 
used only in situations where the guided gallery walk is not suitable.

If the guided gallery walk is to be effective, we need to have 
student work from every task, or every solution strategy, present 

on the boards at the time of consolidation. How do we ensure this 
when students have the option of erasing whenever they want?

Preparation for consolidation begins very early on in the flow 
sequence. During this time, you, as the teacher, need to be on the 

lookout for student work that you would like preserved for the 
consolidation. If you see such work, simply draw a box around it with 
your red marker and ask the students to not erase it. In the end, you 
may not use that particular work for the consolidation, but this 

The gallery walk 
needed to be a 

gallery walk.
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practice ensures you have the options you need when it comes time to 
build your consolidation sequence.

Rather than asking students not to erase work, wouldn’t it just be 
easier to take pictures of work and use those for the consolidation?

Taking pictures is a great idea. The only caution is that pictures 
create a temptation to use them as a slide show during the 

consolidation—with students sitting in their seats. Regardless of what 
method you choose to consolidate, or how you choose to preserve the 
students’ work, putting students back in their seats drastically 
diminishes the thinking and engagement during the consolidation. 
Keep them standing.

What if a specific approach to a task that I want to discuss during 
the consolidation is not appearing in any group’s work?

If this happens you have two options—the first of which is to 
simply discuss (Method 1) or demonstrate (Method 2) this 

approach as part of the consolidation process. A far more effective 
option, however, is to drop a hint with one or two groups during the 
flow sequence that they may want to try this approach. This almost 
always gets what you want up on the vertical surfaces. What this 
means is that planning for consolidation begins early on in the flow 
sequence and requires you not only to lock in student work, but also 
to subtly plant the ideas you want to appear.

What if a group has a great approach to a task and I want to 
include it in the gallery walk—but their work is incomplete or 

incoherent?
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There are two things you can do in this situation. First, you could 
ask the group to clean up their work a bit before the consolidation. 

Second, you can add notation to their work during the gallery walk as 
you are facilitating a whole class discussion. It is perfectly OK to add 
notation with your red marker to any student work during the gallery 
walk. However, it is not OK to erase students’ work. Erasing devalues 
their work and should only be done when absolutely needed and only 
with permission.

All of the preparation for the guided gallery walk seems daunting. 
How do I keep track of it all?

It is daunting at first, but teachers report that once started, they 
quickly get very good at it. Your red marker is highly visible and 

allows you to see the traces of your efforts to lock in student work and 
drop hints. At some point prior to beginning the consolidation, you 
build your narrative by simply going around and numbering the 
vertical surfaces in the order you want to discuss them while at the 
same time drawing boxes around the aspects of the work you want to 
discuss during the guided gallery walk.

With all this focus on student work, shouldn’t we be sensitive about 
their feelings if we are looking at something that is incorrect?

We should always be aware of students’ sensitivities. The fact that 
groups are not allowed to talk about their own work affords them a 

certain anonymity. We have also found that pulling all students to the 
center of the room or some vertical-surface-free neutral corner before 
the consolidation begins and having a discussion about what they were 
asked to solve—“Can someone rephrase what you were being asked to 
do?”—severs their attachment to, and ownership of, the work. Not only 
does this increase the anonymity of the work, but it opens up the possibility 
for the teacher to take ownership of the gallery for their own purposes. By 
first severing the ties between groups and their work, it allows the teacher 
to lead discussions about work rather than about students.

What if I don’t know exactly what a group was 
thinking? Should I still include it in the gallery walk?

The purpose of the discussion of student work 
during the gallery walk is not to figure out, with 

absolute certainty, what a group was thinking. The goal is 
to use their work, the traces of their thinking, to get the 
whole class to think and explain. So, not knowing exactly 
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what a group was thinking is OK. But if you do want to know, you can 
always ask them prior to the start of the consolidation. You are still 
active in giving hints and extensions, and part of this requires you to 
interact with groups—especially groups where you do not understand 
what they are doing. Preparation for consolidation is added to the 
important work of creating and keeping students in flow—it does not 
displace this work.

Should I try to select something from every vertical surface for 
the guided gallery walk?

No. This would create too much redundancy and would cause 
the consolidation to take too long. Over time, every student will 

have their work honored. It doesn’t have to happen every day.

In this chapter you talk about consolidating and reifying at the 
level where students got to. And you also talked about leveling to 

the top as something that doesn’t work. Does that mean we can never 
lift students’ understanding above the level they got to?

We can. But there is a limit to how far we can lift their 
understanding at a single point in time. What we saw in the 

research is that when we consolidated from the bottom, moving up 
through the levels that they had already worked through, we were 
able to lift their understanding up beyond where they got to. Leveling 
to the top doesn’t work because it starts the consolidation above (often 
too far above) where the students reached, rather than collecting 
them at the bottom, reifying ideas and terminology, and then 
moving upward.

If the guided gallery walk is the most effective, when are 
the other two methods of consolidation appropriate?

The first method—discussion without notation—is really 
useful when discussing global strategies that have emerged 

from the student work—“What should we do first when making a 
graph?”, “When do we need to regroup?” It is also an important 
part of the reifying discourse that is happening the whole time 

during a guided gallery walk. The second method—discussion with 
notation—can also happen at any point within a guided gallery walk as a 
way to apply a group’s strategy to a new task—“So, how would this group 
add these two numbers?” As a standalone strategy, however, it should be 
used sparingly, as its similarity to a lecture can easily put students into a 
passive mode of receiving knowledge rather than an active mode 
of thinking.
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Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. In this chapter you learned about consolidation as moving 
through the flow levels of a task or sequence of tasks. And 
while doing so, to start slow and go faster as you go. This 
means that the most nuanced and sophisticated solutions 
will get the least attention. How do you feel about this?

3. In the FAQ, it was mentioned that taking pictures is a 
very good idea. But you were cautioned against having 
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the students sit while showing these pictures. So, what are 
pictures good for, and can you think of ways to use these 
pictures in a thinking classroom without allowing them to 
take away opportunities to think?

4. Planning and preparing for consolidation while trying to 
maintain flow can be daunting. What are some things you 
can do ahead of time so that it will become less daunting?

5. In Chapter 6 you were presented with results that showed 
that we need to get the students thinking about a task 
within the first five minutes of class. This removes from 
our practice the ability to teach at the beginning of the 
lesson. This chapter, on consolidation, offers us a place 
where that teaching can now occur. How do you feel about 
consolidation—at the end of the lesson—as teaching?

6. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
The following are tasks that produce a variety of different solutions and 
solution pathways. As such, they are ideal for practicing consolidating 
from the bottom.

Grades K–5: Farmer John

A farmer has some chickens and some pigs. One day they notice that 
their animals have a total of 22 legs. How many chickens and how 
many pigs might they have? Can you come up with another solution? 
And another? Can you come up with all the solutions? How do you 
know that you have all the solutions?
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Grades 6–9: Painted Cube

A 3 x 3 x 3 cube, made up of 27 1 x 1 x 1 cubes, is dipped in a bucket 
of paint. After the paint has dried, the 3 x 3 x 3 cube is taken apart 
into its 27 individual cubes. How many of these individual cubes have 
paint on three sides, two sides, one side, zero sides? What if it were 
a 4 x 4 x 4 cube? What if it were a 5 x 5 x 5 cube? What if it were a  
10 x 10 x 10 cube? What if it were an n x n x n cube?

Grades 10–12: 3D Tic-Tac-Toe

In a standard game of tic-tac-toe, a win occurs when 3 X’s or 3 O’s are 
all in a row (colinear). There are 8 ways to win in a standard game of 
tic-tac-toe—three up and down, three side to side, and two diagonally. 
How many ways are there to win in 3D tic-tac-toe, where the rules are 
the same—a win is 3 colinear X’s or O’s?

What if it were played on a 4 x 4 x 4 board, where 4 in a row are 
needed for a win? What if it were played on a 5 x 5 x 5 board, where 
5 in a row are needed for a win? What if it were played on a n x n x n 
board, where n in a row are needed for a win?



CHAPTER 11
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Having students take notes is one of the most enduring 
institutional norms that permeate mathematics classrooms 
all over the world. In my visits to the original 40 classrooms, 
I witnessed students taking notes in all of the 23 high school 
classrooms and in more than half of the 17 elementary 
classrooms. In this chapter you will first see the results of 
research that looks at the normative practice of note taking 
through the lens of thinking. You will then learn about 
an alternative method for having students take notes that 
makes it a thinking activity that is relevant for students in 
Grades 3 to 12.

The Issue
When I observed students taking notes in those original 
40 classrooms, they were most often in the form of what 

I call I-write-you-write notes. This is where the classroom teacher 
writes notes on the board, and the students write down, word for 
word, symbol for symbol, what the teacher has written. These notes 
are usually a combination of definitions and worked examples and 
are accompanied by the teacher’s verbal explanations as they write. 
Occasionally, classroom notes take the form of fill-in-the-blank notes, 
where the students are provided with mostly completed notes and are 
asked to fill missing pieces as the teacher writes on the board.

Given that, in many instances, more than half the lesson was 
dedicated to this activity, it must be an important and worthwhile 
endeavor. When I interviewed teachers about this, the two most 
common reasons teachers gave for having students write notes were 
that (1) it created a record for them to look back at in the future, and 
(2) it was a way for them to learn. Although using notes as a record 
was suggested almost exclusively by high school teachers, using notes 
as a form of learning was supported by teachers from Grades 3 to 
12. If writing notes is a way to enhance learning, and if thinking is a 
necessary precursor to learning, then students taking notes must be 
a thinking activity.

The Problem
To test whether students taking notes is indeed a thinking 
activity, we documented the various studenting behaviors 
exhibited during I-write-you-write note taking in 10 different 
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classrooms (Grades 6 to 12)1 as well as during fill-in-the-blank note 
taking in three classes (Grades 9, 10, 11). We also distributed a one-
question survey to all the students in these 13 classes and conducted 
short interviews with 150 select students.

In the 10 I-write-you-write classrooms, 14% of 
students did not take notes at all, most commonly—
they said—because it was difficult to take notes 
and listen at the same time. And they would rather 
listen. Some said they never looked at the notes 
anyway, and others cited things like “I forgot my 

notebook” or “I forgot my pencil”, which we took to be proxies for “I 
don’t want to take notes.”

Of those students who did take notes, we noticed that more than half 
were not keeping up with the teacher. Why was this significant? To 
answer this, I need to differentiate between what we call live notes 

and dead notes. Live notes are the product of the real-time 
generation of notes by the teacher, where the teacher is 
working through an example, demonstrating the sequence 
of how something is to be done, and providing a narrative as 
the work unfolds. Whereas live notes are a chronologically 
linear process, they are often spatially non-linear. That is, 
the notes are not appearing on the board in a strictly top-to-
bottom, left-to-right fashion. Much of mathematics is, by its 
nature, non-linear.

For example, consider a teacher demonstrating how to make a graph 
of a function. Chronologically, the teacher would first write the 
function or relationship. Then they would make a table of values, 
perhaps generating a list of values for the x variable. This would be 
followed by calculating and recording the y-value for each x-value. 
The teacher would then draw an appropriate set of x and y coordinates 
with consideration of the domain and range of the values in their table 
of values. This would be followed by a labeling and numbering of the 
axes, plotting of each ordered pair from the table of values, and finally 
the drawing of the curve. All the while, the teacher would be narrating 
what is happening and why certain choices and decisions are being 
made and how and why certain actions are being performed.

Although linear in a chronological sense, how this is unfolding spatially 
is non-linear. The teacher starts in the top left hand corner of the board 

1 See Liljedahl & Allan (2013a) for a more detailed description of the methodology used.
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or page with the function, then works vertically downward to create 
the table of values and list the x-values. This is followed by a return to 
the top of the table of values to fill in the y-value for each x-value. Some 
of the calculations for this are being performed in the bottom right of 
the board. The teacher then moves to the top-middle of the board to 
start drawing the y-axis, and so on. When this process is complete, the 
resultant static images are the dead notes (see Figure 11.1) in which 
neither the chronological nor spatial sequencing is evident.

Figure 11.1 Teacher-generated notes.

Setting aside for the moment the fact that 
this scenario represents a situation in 
which the teacher, rather than the students, 
is the one doing all the thinking, the other 
problem is that the more than half of the 
students who are not keeping up with the 
teacher are left to copy dead notes. This 
is not like copying a sentence written on 
the board where they can read it, make 
sense of it, and write it out. Copying an 
image without the benefit of chronological 
and spatial sequencing requires students 
to look repeatedly between the board and their page to get all of 
the details of, for example, the table of values, the axes, the plotted 
ordered pairs, and the graph into the correct place. This continual 
effort to track, write, and keep up with the teacher’s thinking requires 
a huge amount of cognitive effort, which causes students to fall 
further behind—to the point where they just stop listening and trying 
to make sense of what they are writing.

This continual effort to track, 
write, and keep up with the 
teachers’ thinking requires 
a huge amount of cognitive 

effort, which causes students 
to fall further behind—to the 

point where they just stop 
listening and trying to make 

sense of what they are writing.
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This is exactly what we observed in the behavior of the students who 
were not keeping up with the leading edge of the live notes. It started 
with a lot of head movement as the students looked from dead notes, 
to their notebook, to the live notes and the teacher, back to the dead 
notes, back to their notebook, and so on. Eventually, and sometimes 
rather quickly, they stopped looking at the live notes, and when this 
happened, they stopped trying to gain the benefit of the chronological 
and spatial sequencing of what the teacher was doing and saying and 
resigned themselves to just copying the dead notes.

Researcher So, I noticed you were falling behind on the 
notes today.

Philip Yeah. That usually happens.

Researcher So, how do you know what order to write the notes 
in if you are not keeping up?

Philip Huh? I just write what’s on the board.

Researcher Of course. But what part of the board do you 
start with?

Philip I start with the top left and then just kind of copy 
what is on the board. I don’t really follow any order. 
Sometimes I start with the biggest thing and then 
add the little things around it.

And when this happened, they stopped listening to the teacher.

Researcher So, when you are behind on the notes like that, 
are you trying to listen to what the teacher is 
talking about?

Stephanie Sometimes . . . I guess.

Researcher It didn’t look like that at the end there.

Stephanie No. Not at the end. I had given up by then. But at 
the beginning when I was trying to keep up, I was 
listening.

This may be why several students declared that they would rather 
listen than write notes. For these students, writing notes and listening 
to the teacher are an either/or situation—either they are listening to 
the teacher at the leading edge of the live notes, or they are copying 
dead notes, like Stephanie did, without listening.

Interviewer Say a bit more about why you can either listen 
or you can write notes. Why not both at the 
same time?
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Alana Oh I can do both for a while—at the beginning. But 
when I start to fall behind I just end up writing 
the whole class and miss everything the teacher 
is saying. And, in the end, I don’t even know what I 
have written anyways.

Interviewer Because you weren’t listening?

Alana No. Because I actually stop paying attention to 
what I am writing. I just kind of go into this zombie 
state and just copy what is on the board. This is 
why I have decided to just listen to the teacher. 
I can take a picture of my friends’ notes later.

Like Alana, nearly all of the students we observed either 
falling behind on notes or only listening had the same 
refrain—copying dead notes was a mindless activity. This was 
evident in the body language of the students we observed. 
As they fell behind they slipped into a sort of malaise as their 
attention to what they were doing waned.

Fill-in-the-blank notes seems like a good way to mitigate the issue of 
students falling behind. Indeed, when asked why teachers use fill-in-
the-blank notes, all three teachers said that this is a way to make sure 
that students can spend more time listening than writing. However, 
when we observed student behaviors in these classes, something new 
and even more troubling emerged. Although it is true that the students 
spent much less time writing, and that they did not fall behind, very 
few students (35%) actually spent the time listening—at least in the 
ways the teachers had intended. Instead, they were listening for key 
terms or phrases, or watching for key steps in the examples. In fact, 
many of the students were observed to be not listening at all and only 
copying what their neighbors wrote into the blanks. They were simply 
trying to get the information necessary to fill in the blanks rather than 
trying to understand what the bigger picture was.

This is not to say that all of the students who were keeping up were 
any more actively involved than those who weren’t. Of all of the 
students we interviewed, just over a third were keeping up with the 
live notes, but most of them still admitted that they weren’t thinking 
about much.

Interviewer Not much! Really?

Samantha Yup.

Interviewer So, what are you doing the whole time you are 
taking notes?

Copying dead 
notes was a 

mindless activity.
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Samantha Just copying them down. I actually like this. It’s 
easy and I don’t need to think much.

The only difference between these students and those 
copying dead notes was that they were just copying 
faster. All of this showed us that the time spent having 
students create notes was, for the most part, not well 
spent. Both I-write-you-write and fill-in-the-blank 
methods of producing notes were activities that were 
antithetical to student thinking—and antithetical to 
building a thinking classroom. The next question, 
then, became—what was the value of these notes 
given the non-thinking time it took to create them? 
What did students use them for?

To answer this question, we asked each of the students in these 
13 classes to answer a one question survey—Do you use your notes 
on a regular basis? Please comment. The results of this survey were 
disappointing, with only 18% of students (five or fewer students in 
most classes) stating that they regularly used their notes in one way 
or another.

Researcher So, let me get this straight. I just saw you write 
notes for 35 minutes, and you are telling me that 
you won’t use them? Why not?

Nahal I mean, they’re almost exactly what’s in the 
textbook. So, if I need to look something up while 
doing my homework, I’ll just flip back a few pages 
in the textbook.

Researcher So, why write notes?

Nahal It’s what we do in class.

Researcher Can you explain a little bit more about why you 
don’t use your notes when doing homework?

Steven I try to do the homework in my spare, which is the 
next block. So, I can usually still remember things 
from class.

Researcher So, why write notes?

Steven I don’t know. I guess it’s just what we do.

So, if the writing of notes is a non-thinking activity, and few students 
even used them, the question then became—how can we reimagine 
note taking as a meaningful thinking activity?

Both I-write-you-write 
and fill-in-the-blank 

methods of producing 
notes were activities 

that were antithetical to 
student thinking—and 
antithetical to building 
a thinking classroom.
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Toward a Thinking 
Classroom

To figure out how to make note taking a thinking activity, I began 
by observing students in settings where they were not required to 
take notes but did anyway. Here I asked people who were not writing 
notes, why they were not—especially given that some of their peers 
were. I learned there are three main reasons that students don’t take 
notes if not required to.

1. They will not write notes on something that they do not find 
interesting or important.

2. They will not write notes on something they know they can 
find elsewhere—like a PowerPoint presentation, an article, or 
the textbook.

3. They will not write notes on things they think they 
will remember.

What this means, is that students in these 
situations only take notes about things they feel 
are important and for which documentation does 
not exist somewhere else, and for their future 
forgetful selves. This is the essence of mindful (as 
opposed to mindless) and meaningful (as opposed 
to meaningless) note taking and became the focus 
of our first intervention into note taking—we were 
going to have students write notes to their future 
forgetful selves. In the end, we discovered that this 
was a thinking approach to note-taking—in other 
words we found a way to make meaningful notes. However, this didn’t 
come easily to all students at first.

We tried this thinking approach to note taking with 11 teachers 
(Grades 4 to 12) in 48 classrooms. These teachers were all working 
within the framework of having students do curriculum-based 
thinking tasks in random groups on VNPSs, and their rooms were 
all defronted. They were all at varying stages of competency with 
the rest of the aforementioned thinking classroom practices. The 
teachers each committed to running their classrooms as they always 
did, with the exception that towards the end of the lesson they would 
ask their students to sit down in their desks to write some notes to 

Notes to their future 
forgetful selves is the 
essence of mindful (as 
opposed to mindless) 

and meaningful 
(as opposed to 
meaningless) 
note taking.
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their future forgetful selves. They elaborated on this 
by asking, “What are you going to write down now 
so that, in three weeks, you will remember what you 
learned today?” I asked that they allow a minimum of 
10 minutes for this activity.

This worked wonderfully in the four Grade 4, 5, and 
6 classes, with students producing beautiful, and 
personalized, representations of what they had learned. 
Some students used a lot of pictures, some included 
examples, and some wrote out sentences explaining 

what they had done. Of course, some students struggled, but they 
were in the minority. It worked OK in the Grade 11 and 12 classes 
as well, but these students struggled with this more than the younger 
students. Suggestions that they include examples, and annotate those 
examples with comments about what they did, helped. It also helped 
to share examples of different types of notes and to ask students to 
discuss, in random groups, which notes were useful and why. This 
helped make explicit the qualities of notes that were meaningful to 
them. What helped the most, however, was circling back three weeks 
later with questions that required them to use these notes. This gave 
relatively quick feedback to them as to what they would find useful 
three weeks down the road. By and large, they had underestimated 
how much they would forget, and this experience had an immediate 
and significant impact on how carefully they annotated new notes 
from that point forward.

Interestingly, the Grade 8 and 9 students struggled the most with this 
task. The vast majority of these students were at a complete loss as 
to what to write and for what purpose. Some wrote everything they 
could think of, while others were paralyzed by the vast possibility of 
what to write. Suggestions to include examples helped for some, but 
only exasperated those who were struggling with what to select. The 
use of exemplars and circling back three weeks later had little impact 
on these students. Interviews with these students revealed some of 
the issues.

Researcher I see that you haven’t written much.

Patrick Hmm . . .

Researcher Why not? What’s the problem?

Patrick I don’t know. In my other classes we just copy what 
the teacher writes on the board. I like that better.

Teachers asked 
students: “What are 
you going to write 

down now so that, in 
three weeks, you will 
remember what you 

learned today?”
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Researcher Why is that?

Patrick I don’t know. I don’t have to think so much about it, 
I guess. Like, I don’t have to decide what to write. 
That’s hard.

What we were finding, in general, was that by Grade 
8, students have become encultured into a more 
mindless form of note taking, and they have lost 
the ability to decide for themselves what to write 
down. The younger students did not suffer from 
this and were more than happy to write what they 
wanted. This is not to say that they did not benefit 
from some guidance, but they were not impeded 
by a preconceived notion that taking notes is a 
mindless activity.

Likewise, the older students, although even more encultured into note 
taking as a mindless activity, were more aware of the role of notes as a 
potentially meaningful activity. The Grade 8s and 9s had not yet come 
to this realization as they considered note taking something they did 
for the teacher, not for themselves.

What the Grade 8 and 9 students needed, in essence, 
was a support tool to help scaffold and organize 
their notes. With this in mind, we turned to 
graphic organizers. Graphic organizers have been 
used with great success in humanities teaching for 
decades. The initial impetus to try using these as 
a template for note taking came from a group of 
teachers who had some experiences teaching in 
this area.

Graphic organizers can take many forms, but we 
experimented with four different types—the first of which (Type I) is 
just to have students write their meaningful notes in a cell of limited 
size (see Figure 11.2). The idea is that they can write whatever they 
want in their notes today, but it all has to fit into a cell that is, in the 
case of the example, one-eighth of a page. This constraint on available 
space helps students focus what they want to write to their future 
forgetful selves. As before, some students chose to use diagrams, or 
examples, while others opted more for words.

By Grade 8, students 
have become 

encultured into a more 
mindless form of note 
taking and they have 

lost the ability to decide 
for themselves what to 

write down.

What the Grade 8 and 
9 students needed, in 

essence, was a support 
tool to help scaffold 
and organize their 

notes. They needed 
graphic organizers.
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The second type of graphic organizer (Type II) has the same sort of 
cell structure as Type I, but students are allowed to use those cells as 
a way to organize different aspects of their notes (see Figure 11.3). So, 
whereas the limited space organizer (Type I) dictates where and how 
much the students can write, in Type II neither of these is limited. 
Rather, the cells are a way for students to demarcate different aspects 
of their notes.

Figure 11.2 Type I: Graphic organizer with cells as restrictions.

Figure 11.3 Type II: Graphic organizer with cells as demarcations.

Source: Courtesy of students at St. Mother Theresa School.
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Figure 11.4 Type III: Graphic organizer with prelabeled cells to 
demarcate different subtopics.

Figure 11.5 Student fills in a Type III graphic organizer with prelabeled 
cells to demarcate different subtopics.

LR1 Data Management

Scatter plot

Collect, organize, & analyze data

LR2 Characteristics of Linear Relations

Linear

Line/Curve of best fit

Direct variation

Linear Relations

Describe trends & relationships in data

Line of best fit

Linear Relations

Non-linear

Rate of change

Partial variation

First differences

Initial Value

Create tables of values,
graphs, & equations
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Type III (see Figures 11.4 and 11.5) formalizes the organization and 
demarcation aspects of the Type II graphic organizer. Unlike the Type 
II notes, however, with this graphic organizer the teacher prelabels the 
cells according to the things that they feel are important for students 
to record. The student can write what they want in these cells, but the 
category of what goes in those cells is predetermined.

What all three of these organizers have in common is a focus on 
brevity and, although quite different in style, result in an entire unit 
of notes on two sides of a page. This, along with the allocation of 
where to write, seems to be tremendously liberating for students who 
are paralyzed by the possibility of choice.

Something else they have in common, but not 
explicitly, is that they all allow for the possibility 
of students including worked examples. 
Unfortunately, our research showed that very 
few students seize this opportunity on their own. 
This is problematic in that worked examples 
are an important part of notes and convey what 
John Mason and David Pimm (1984) refer 
to as the general in the particular. Through 
worked examples, students have the potential to 

communicate to their future selves not only how to do something, 
but why something is done. This communication is enhanced, of 
course, if they go beyond the inclusion of worked examples and begin 
to annotate these examples. To make this explicit, the Type III (see 
Figure 11.4) graphic organizer could include demarcated spaces for 
worked examples to be added.

Alternatively, an altogether different type of graphic organizer can 
be used (Type IV). As opposed to breaking content into subtopics 
(types II and III), this organizer differentiates among vocabulary 
or definitions, big ideas or concepts, procedures, and examples 
(see  Figure 11.6). These cells can be created and prelabeled by the 
teacher or by the students. Some teachers have students create and fill 
a new one of these for every lesson, while others have the students do 
one per unit and add to it at the end of each lesson. The headings are 
not fixed and can be varied according to what an individual teacher 
feels is important for students to record. What is important, however, 
is that the inclusion of worked examples is explicit.

Through worked 
examples, students 
have the potential to 
communicate to their 
future selves not only 

how to do something, but 
why something is done.
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Regardless of whether graphic organizers are used or not, we learned 
from experimenting with having students write notes to their future 
forgetful selves that there are three distinct competencies needed 
for students to be able to produce useful worked examples that are 
meaningful to them:

• Creation: producing a worked example.

• Annotation: using small phrases and 
side examples as signposts on the 
journey through a worked example.

• Selection: choosing an appropriate 
question to form the basis of a 
worked example.

Of these, creation is the easiest competency to acquire. Students, 
when given a specific question, usually had little difficulty producing 
the worked example. Very few students, however, spontaneously used 
this as an opportunity to begin to annotate their examples. We found 
that we could enhance this skill in students by first having them 
annotate complete, but incorrect, worked examples.

Figure 11.6 Type IV: Graphic organizer with prelabeled cells to 
demarcate different aspects of a topic.

There are three distinct 
competencies needed 
for students to be able 
to produce useful and 
meaningful (to them) 

worked examples: creation, 
annotation, and selection.

Vocabulary/Definition Big Ideas/Concepts

Procedures Examples
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The most difficult of the three competencies, however, is the selection 
of a question to create a worked example in response to. As teachers, 
we know that a worked example needs to stand, in a general sense, 
as a proxy for a wide range of examples. Whereas an appropriately 
chosen question can make transparent every step of the worked 
example, poorly chosen numbers can obfuscate what is happening. 
For example, 22 = 4 makes ambiguous the role that the exponent is 
playing in this equation—is it a multiplicand or the number of times 
2 is multiplied?

Students’ selection competency improved when teachers gave them a 
set of questions to choose from. This occurred in two ways. The first 
was to give the students a list of questions from which to choose one 
or two to develop as worked examples. This could either be integrated 
right into a Type III or Type IV graphic organizer or simply listed 
on the board. The second was to draw their attention to the fact that 
they had just worked through several curriculum questions in their 
random groups on the whiteboards and that one or two of these may 
serve as potentially good worked examples. Regardless, narrowing 
the choice to some small finite number helped students to begin to 
make appropriate selections.

In the end, we studied teachers’ efforts to scaffold students’ 
autonomous note taking in five classrooms (Grades 5–11), using 
some variation of the aforementioned graphic organizers alongside 
strategies for helping students to create or select and then annotate 

worked examples. We now observed 75%–100% of students 
taking notes, depending on the class, and 50% of students 
referring back to their notes at some point. Often this 
referring back occurred when they started doing their 
check-your-understanding questions (Chapter 7), but it 
also occurred during their time working on whiteboards in 
random groups when, as a group, they felt the need to look 
up something they had previously learned. The students 
who took notes in this mindful and thoughtful way found 
more meaning in, and use for, them.

These notes became a way for students to consolidate the learning that 
they had experienced within their collaborative groups. Unlike the 
teacher-led consolidation discussed in Chapter 10, meaningful note 
taking is student led and is a vital part of transitioning from collective 
knowing and doing into individual knowing and doing. This will be 
discussed more in Chapter 15.

The students 
who took notes 
in this mindful 
and thoughtful 

way found more 
meaning in, and 

use for, them.
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You mention that in the I-write-you-write and fill-in-the-blank 
notes, students take notes for the wrong reason and then don’t 

look at them. How can I make sure that this doesn’t happen when I 
switch to meaningful notes?

The most important thing you can do for this is messaging. The 
message that needs be used repeatedly has to do with who notes 

are for—they are by them and for them. This cannot be overstated. 
When you first introduce the notion of notes to their future forgetful 
selves, use this phrasing, and use it every time you 
discuss notes with the students. This is needed to 
counteract the current student belief that notes 
are by the teacher—for the teacher. So, for example, 
if a student asks you if their notes are good, resist 
the urge to impose your own judgement on the 
notes. Instead, ask the student if they think the 
notes will be useful for them in a few weeks’ time.

Figure 11.7 Example student notes.

The message that needs 
be used repeatedly has 

to do with who notes are 
for—they are by them 

and for them.
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How important is it for students in different grades to take notes?

As mentioned, meaningful notes serve two purposes: (1) to create 
a record and (2) to reify and consolidate their individual learning. 

Although student notes as a record may only feel relevant for higher 
grades, meaningful notes as individually consolidation of learning 
was shown in our research to be relevant in the learning of students as 
young as Grade 3. This will be discussed more in Chapter 15.

It seems like it would be easiest to have students write meaningful 
notes right after I have consolidated from the bottom. Is 

that correct?

Absolutely—especially when you are first introducing these types 
of notes. Students’ meaningful notes are a natural extension of, 

and easier for students to do if immediately preceded by, the collective 
reifying experience of consolidation from the bottom (Chapter 10). 
For this reason, when consolidating from the bottom, mark up boards 
that you are discussing with circles and annotations. Also number the 
examples you discuss as you are doing it. These two acts will help 
draw students’ attention to things that they may wish to include in 
their meaningful notes.

My students take pictures of work they produce in their random 
groups while at their VNPS. Is this the same as notes?

We had the same question. It turns out that the answer is no. 
Having the pictures in their phone is not, in and of itself, very 

useful. A picture is just a record of what they have done. It is the act of 
reifying these pictures into meaningful notes that helps move the 
thinking and learning forward. So, if students are wanting to take 
pictures of their work, or the work of others, encourage them to do so. 
But then make sure you, likewise, encourage them to turn those 
pictures into notes to their future forgetful selves.

Do you have any other hints to help my students produce better 
meaningful notes?

A very easy, and effective, way to introduce meaningful notes, 
after consolidation from the bottom, is to send the students, in 

their random groups, back to their boards to collaboratively write 
notes to their future forgetful selves. Not only does the ensuing 
conversation drive reification, but using the collaborative large space 
is a very safe way to start taking notes. It also affords the immediate 
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ability for you to help draw students’ attention to notes that may be 
useful to them. For example, when the activity is done, give every 
student three sticky notes, and ask them to walk around the room and 
place the sticky notes on the collaborative notes that they would find 
most useful to them in three weeks’ time. Follow this up with a 
discussion of what it is about the boards that received lots of sticky 
notes that makes them such meaningful notes, create a list, and post 
this list, maybe along with some pictures, the next time you do the 
activity. In very short order students will be writing meaningful notes 
on their own.

If these notes are by students—for students, then it sounds like I 
can’t be checking to make sure they have written something that 

is complete and useful to them in the future. Is that correct?

Correct. Despite the effectiveness of meaningful notes, there will 
still be 15% to 30% of students who write nothing. As with check-

your-understanding questions (Chapter 7), any efforts to reduce this 
number had an immediate negative effect on the way the rest of the 
students in the class engaged in the process. These notes, by their very 
nature are taken by students—for students. We are providing them 
with opportunities and structure to do what is best for them. If they 
choose not to seize these opportunities or use these structures, that is 
their choice. When we tried to force these upon them by checking or 
marking that they were doing them, the dynamic immediately shifted 
back toward what we were observing with the fill-in-the-blank 
notes—students mindlessly filling in boxes, copying off each other, 
and not using the notes—and not thinking. This shift in behavior was 
not just among the students we were trying to impact. This behavior 
spread immediately to most of the students who had previously been, 
with or without the graphic organizers, mindfully and meaningfully 
taking notes to their future forgetful selves. The notes were no longer 
by them—for them, they were now for the teacher. Like check-your-
understanding questions, meaningful notes are an incredibly sensitive 
structure. Whether you choose to use graphic organizers or not, the 
messaging around the fact that these are by students—for students is 
vital. Anything you do to force the issue changes, in profoundly 
negative ways, who they perceive the notes are for.

If the students choose what to write, and I can’t mark their notes, 
how can I know that what they are writing is correct?

You can’t know that. But, then again, you can’t really know 
whether students are doing it correctly when writing the I-write-
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you-write and fill-in-the-blank notes either. You just have to trust that 
they will.

How can I know that the notes to their future forgetful selves my 
students are writing will be useful to them in the future?

Three weeks after you have started doing notes to their future 
forgetful selves with your students, give them tasks to do, either 

in their random groups or on their own, that will require them to 
draw on the knowledge that they have written down in their notes. 
This feedback loop is vital in helping them to understand what level 
of detail they need to include in their notes as a record.

Are graphic organizers just for Grade 8 and 9 students?

No. We explored these initially in the context of Grades 8 and 9 
because they were too encultured to note taking as being a 

mindless and meaningless activity, and the prompt to write notes to 
their future forgetful selves was not enough to override this 
enculturation. But, we quickly learned that graphic organizers of any 
type were useful for students from Grade 3 to Grade 12.

Should we be pulling back on the scaffolding in the graphic 
organizers as the students move through the year?

Depending on the grade, yes. For example, your Grade 12 
students, in preparation for postsecondary studies, should be 

able to write meaningful notes without any scaffolding by the end of 
the course. For the rest of the grades you can proceed as you feel is 
best. The bottom line is that notes to their future forgetful selves do 
not need as much scaffolding once the students realize that notes are 
by them—for them. The same is true of the scaffolding around worked 
examples. Although you may start the year by giving them a list from 
which to choose a question to develop into a worked example, the 
goal is to gradually move toward them selecting, for themselves, what 
would make a good example.

Can’t we just stop doing notes altogether and just put them online?

We tried this. On the plus side, this freed up more time in the 
lesson for thinking activities such as collaboration, discussion, 

and solving thinking tasks. On the minus side, however, the 
elimination of notes altogether also eliminated the opportunity for 
students to reify and consolidate their individual learning.
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Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. Which of your students do you think will have an easy time 
doing meaningful notes? Which will need more support? 
Which will not do them?

3. Which graphic organizer, if any, do you think would be best 
for your students?

4. How do you feel about the fact that if you try to manage 
meaningful notes, students will start to do them for the 
wrong reason?
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5. Think of a time where you, yourself, took I-write-you-write 
and/or fill-in-the-blank notes. How engaged were you?

6. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
The following are tasks that require multistep solutions and 
solution pathways. As such, they are ideal for students to write 
meaningful notes on.

Grades K–5: Dot Patterns

Consider the following dot pattern. There are 25 dots. Find multiple 
ways to show that there are 25 dots by circling pieces of it and writing 
the appropriate number sentence.

Grades 6–9: 1,001 Pennies

There are 1,001 pennies lined up on a table. Starting at one end of the 
line, I replace every second coin with a nickel. I then go back to the 
beginning and replace every third coin with a dime. Finally, I go back 
to the beginning and replace every fourth coin with a quarter. How 
much money is now on the table?
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Grades 10–12: Bank Robber

A bank robber is being chased by a bank guard when they fall into a 
square swimming pool. By the time the guard gets to the corner of 
the pool, the robber has swum into the exact middle of the pool. The 
guard can run faster than the robber can swim. But the robber can 
run faster than the guard can run. What direction should the bank 
robber swim in (in a straight line) to maximize their chance of escape?



CHAPTER 12
WHAT WE CHOOSE TO EVALUATE IN 

A THINKING CLASSROOM
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In Chapter 8 we looked at the role that fostering autonomy can play to 
help mobilize knowledge, which, in turn, helps a thinking classroom 
to function better. In this chapter you will learn about how we, as 
teachers, can use evaluation to further develop and refine these, and 
other, student competencies. By the end of this chapter you will be able 
to cocreate—with students—and administer rubrics for improving 
student perseverance, risk taking, autonomous actions, et cetera.

The Issue
What competencies are valuable for students to be 
successful in a thinking classroom? Take a moment to 

answer this question. Now pick the three competencies on your list 
that you think are the most valuable for student success in a thinking 
classroom.

Over the last few years I have asked teachers in over 50 different 
professional development settings this exact same question. Working 
in random groups of three and on vertical non-permanent surfaces, 
the lists that they produce usually contain between 10 and 20 
different competencies ranging from curiosity to critical thinking to 
patience. When I ask each group to choose the three competencies 
that they think are most valuable—those most likely to lead to student 
success in a thinking classroom—and then compile every group’s top 
three competencies into a master list (a union of the top threes), an 
interesting thing happens. Regardless of geography, grade levels, 
or professional development setting, the same three competencies 
appear every time:

• perseverance

• willingness to take risks

• ability to collaborate

Even when I ask the question without situating it in a thinking 
classroom setting—what competencies are valuable for students to be 
successful at the next task/the next lesson/the next unit/mathematics—
the same three competencies emerge every time. Hundreds of 
teachers—maybe including you—have identified these as the 
competencies most valuable to student success in not only thinking 
classrooms, but mathematics classrooms in general. This is not to say 
that these are the only three competencies that end up on the master 
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list. Curiosity, autonomy, self-responsibility, grit, positive views, self-
efficacy, et cetera will also make appearances, but not with the same 
consistency as perseverance, willingness to take risks, and ability to 
collaborate.

My next question to these teachers, and to you, is always the same—
Is it our job, as teachers, to wait for students to come to us with these 
competencies in place, or is it our job to develop these competencies 
within the students that we have in front of us? The answer is always 
the same—it is our job to develop these competencies. Of course, it is. 
In fact, many jurisdictions around the world have these, or similar, 
competencies (sometimes called processes), as explicit outcomes of 
their curricula.

The Problem
Whether or not we should develop these competencies is not 
the question we should concern ourselves with—the answer 

is clear. You are possibly already doing this through problem-based 
learning, collaborative groups, or mathematical discussion. If you 
have been implementing the thinking practices as you read along, you 
are definitely beginning to develop these competencies.

The question we should concern ourselves with is—
How are you going to evaluate them? Depending on 
the mandates of the curriculum you work under, 
you may neither be required to, nor have a desire to, 
evaluate such competencies. But this misses the point. 
If these competencies are so valuable, then we need to 
evaluate them—and how we evaluate them becomes 
the key question. This is because evaluation is a 

double edged sword. When we evaluate our students, they evaluate 
us—for what we choose to evaluate tells our students what we value. 
So, if we value perseverance, we need to find a way to evaluate it. If we 
value collaboration, we need to find a way to evaluate it. No amount 
of talking about how important and valuable these competencies are 
is going to convince students about our conviction around them if we 
choose only to evaluate their abilities to individually answer closed 
skill math questions. We need to put our evaluation where our mouth 
is. We need to start evaluating what we value.

We need to put our 
evaluation where our 

mouth is. We need 
to start evaluating 

what we value.
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This is not to say that we stop evaluating students’ abilities to 
demonstrate individual attainment of curriculum outcomes, but we 
need to also find ways to evaluate those things that we actually say we 
find most valuable. If you have been implementing the 11 practices 
presented thus far, you are starting to feel this tension—the feeling 
that somehow we need to broaden our assessment practice to begin 
to value the competencies that we are espousing, developing, and 
utilizing every day in a thinking classroom. But this need, in and of 
itself, only tells us what we want to do. It doesn’t tell us how to do 
it—and how we do it turns out to be very important.

Toward a Thinking 
Classroom

This tension was the exact starting point of 
the research into how we can begin to evaluate 
what we value—to begin to find ways to value 
the perseverance, collaboration, and willingness 
to take risks that we were asking students to 
undertake. Clearly, your typical test is not going 
to provide the means to achieve this. We needed 
other tools, other metrics, other instruments 
that could evaluate complex competencies. One thought was to try to 
leverage a tool that already existed—a rubric—to see if it could help us.

The Rubric Approach

You may be familiar with or have used rubrics—or matrices as they are 
sometimes called—like the one in Figure 12.1. This rubric, although 
not designed to evaluate the competencies we were interested in, was 
widely used within the jurisdiction where the research was taking 
place and was familiar to both teachers and students. As such, it 
became a starting point into our research into the use of rubrics. 
And like our research into homework (Chapter 7) and student notes 
(Chapter 11), our research into rubrics began with a deep dive into 
how effective the status quo was. And the status quo was not good.

We needed other tools, 
other metrics, other 

instruments, that could 
evaluate complex 

competencies.
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Figure 12.1 An existing four-column rubric (British Columbia Ministry of Education, 2020).

Aspect
Not Yet Within 
Expectations

Meets 
Expectations 

(Minimal Level)

Fully Meets 
Expectations

Exceeds 
Expectations

Snapshot • The student 
is unable to 
meet basic 
requirements 
of the task 
without close, 
ongoing 
assistance. 
Unable to 
provide a 
relevant 
extension.

• The work 
satisfies 
most basic 
requirements 
of the task, 
but it is flawed 
or incomplete 
in some way. 
May produce 
a simple 
extension with 
help.

• The work 
satisfies basic 
requirements. 
If asked, 
the student 
can produce 
a relevant 
extension 
or further 
illustration.

• The work is 
complete, 
accurate, and 
efficient. The 
student may 
volunteer an 
extension, an 
application, 
or a further 
illustration.

Concepts and
Applications*
• recognizing 

mathematics

• grade-
specific 
concepts, 
skills

• patterns, 
relationships

• unable to 
identify 
mathematical 
concepts or 
procedures 
needed

• does not 
apply relevant 
mathematical 
concepts 
and skills 
appropriately; 
major errors or 
omissions

• often unable 
to describe 
patterns or 
relationships

• identifies most 
mathematical 
concepts and 
procedures 
needed

• applies most 
relevant 
mathematical 
concepts 
and skills 
appropriately; 
some errors or 
omissions

• may need help 
to describe and 
use patterns and 
relationships

• identifies 
mathematical 
concepts and 
procedures 
needed

• applies 
mathematical 
concepts 
and skills 
appropriately; 
may be 
inefficient, make 
minor errors or 
omissions

• describes and 
uses basic 
patterns and 
relationships

• identifies 
mathematical 
concepts and 
procedures 
needed; may offer 
alternatives

• applies 
mathematical 
concepts and 
skills accurately 
and efficiently; 
thorough

• independently 
describes and 
uses patterns and 
relationships

Strategies
and  
Approaches
• procedures
• estimates 

to verify 
solutions

• appears 
unsystematic 
and inefficient

• results or 
solutions 
are often 
improbable

• generally follows 
instructions 
without adjusting 
or checking

• may need 
reminding to 
verify results 
or solutions; 
estimates are 
generally logical

• follows logical 
steps; may be 
inefficient

• makes logical, 
relatively accurate 
estimates to 
verify results or 
solutions

• structures the task 
efficiently; may find 
a shortcut

• makes logical 
estimates to verify 
results or solutions

Accuracy
• recording, 

calculations

• often includes 
major errors in 
recording or 
calculations

• may include 
some errors in 
recording or 
calculations; 
generally “close”

• recording and 
calculations 
are generally 
accurate; may 
include minor 
errors

• recording and 
calculations are 
accurate; may use 
mental math

Representation
and
Communication
• presenting 

work
• constructing
• charts, 

diagrams, 
displays

• explaining 
procedures, 
results

• work is often 
confusing, with 
key information 
omitted

• often omits 
required charts, 
diagrams, or 
graphs, or 
makes major 
errors

• explanations are 
incomplete or 
illogical

• most work is 
clear; may omit 
some needed 
information

• creates required 
charts, diagrams, 
or graphs; some 
features may be 
inaccurate or 
incomplete

• explanations may 
be incomplete or 
imprecise

• work is generally 
clear and easy to 
follow

• uses required 
charts, diagrams, 
or graphs 
appropriately; 
may have minor 
errors or flaws

• explains 
procedures and 
results logically in 
own words

• work is clear, 
detailed, and 
logically organized

• uses required 
charts, diagrams, 
or graphs 
effectively and 
Accurately

• explains 
procedures and 
results clearly 
and logically; may 
include visuals
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Cursory observations in the classrooms when 
rubrics like the one in Figure 12.1 were in use 
revealed that students didn’t look at the feedback 
the rubrics were providing. In one lesson I 
was observing, 75% of students spent less than 
10  seconds looking at the rubric when it was 
returned to them. The rest of the students spent 
less than one minute looking at the feedback. 
Irrespective of how much time was spent grading student work, and 
irrespective of how carefully teachers highlighted comments on the 
rubric to match what they were seeing in the student work, most 
students were not looking at, never mind attending to, the feedback. 
The messages were being delivered—they just weren’t being received. 
Therefore, these rubrics were having little impact on student behavior. 
And we wanted rubrics that had impact.

So, we began a process of successive designing, 
modifying, and testing various rubrics. Our goal 
was simple—find a rubric that could be used to 
increase thinking behaviors such as perseverance, 
collaboration, and willingness to take risks. What 
emerged from this research was a rubric that 
looked very different from the one in Figure 12.1 
(see Figure 12.2).

In one class, 75% of 
students spent less than 

10 seconds looking at 
the rubric when it was 

returned to them.

What emerged from 
this research was a 

rubric that looked very 
different.

Figure 12.2 Collaboration rubric.

• closed to others’ ideas

• disrespectful of others

• actively excluding

• hogging the marker

• discouraging

• open to others’ ideas

• respectful of others

• actively inclusive

• sharing the marker

• encouraging
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There are five visible differences between this new rubric and the 
ones we started with.

1. Focus

  First, whereas the initial rubrics looked for 
competencies in student work, this new rubric looks 
for competencies in student actions. That is, it is an 
observational rubric (Elrod & Strayer, 2015) to be 
used by the teacher while students are thinking—not 
after they are finished thinking. This, it turned 
out, gave us much more direct access to student 
competencies and, in return, produced bigger 
changes in student behaviors.

2. Number of Columns

  Most of the existing rubrics we initially looked 
at consisted of at least four columns—and in 
some cases as many as five or six. The problem 
is that we cannot nuance language well enough 
to communicate differences among that many 
columns. The bigger problem is that we think we 
can. In truth, however, that nuancing garbles the 
feedback for students. 

Researcher So, what do you need to improve on for next time?

Shen I don’t know.

Researcher Why not?

Shen Like, sometimes I feel like I am mostly right, but my 
teacher thinks I might have some errors.

 Shen’s last comment refers to the accuracy row in Figure 12.1, 
but could apply to several places in that—or any four-
column—rubric. In our attempts to differentiate student 
work across four columns, it is easy to create language for 
the first column. This column generally describes poor 

It is an observational 
rubric to be used 

by the teacher 
while students 

are thinking—not 
after they are 

finished thinking.

The problem is 
that we cannot 

nuance language 
well enough to 
communicate 

differences 
among that many 

columns. The bigger 
problem is that we 

think we can.
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work, and that is easy to articulate. Likewise, the good work 
represented in the fourth column is easy to clearly explain. 
It is when we try to differentiate between the two columns 
in the middle that we get into trouble and end up trying to 
say that mostly right is different from might have some errors, 
or primarily rather than usually, or sometimes rather than 
occasionally. Even if we believe it is clear, it is not clear to the 
students. They can see that they live in different columns, 
but they don’t know what they need to do to move from one 
to the next. Put simply, the information is too much and too 
nuanced to be useful to them. Like anyone, they were more 
likely to actually read and respond to something that is more 
direct, more digestible, and more visual.

 Ironically, we discovered that information in rubrics like 
the one in Figure 12.1 was ambiguous to teachers as well. In 
many cases where we secretly scrambled a rubric, teachers 
were unable to correctly unscramble it—sometimes even 
scrambling it more. It turns out that that level of nuance was 
often just as difficult for them to manage and interpret as 
it was for students. They just didn’t have a better model to 
follow. Once we figured this out, we moved to three-column 
rubrics, and all of those problems went away. The rubrics 
became easier to create and use, and students found them 
easier to interpret—they spent more time looking at the 
feedback, and they were able to take action on that feedback.

 This was true for students in Grades 2–12. For K–1, 
however, we found that even three columns were initially 
too many. Students in these grades are still developing 
their ability to see and sense nuance and subtlety, and they 
are still experiencing their world through a lens of binary 
opposites—good-bad, high-low, hot-cold, wet-dry, big-little, 
and so on (Bettelheim, 1976, Egan 1988, Zazkis & Liljedahl, 
2008). Therefore, for these grades the rubrics were only two 
columns and were constructed, for the most part, using 
visuals (see Figure 12.3).
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Figure 12.3: K–1 collaboration rubric.
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3. Headings

 The third difference is that the headings at the top of 
each column have been replaced by an arrow. Interviews 
with students revealed that many of them were seeing 
the headings in the initial rubric as descriptions of who 
they are, rather than where they are. Deeper investigation 
revealed that how students interpreted these headings was 
influenced by whether they had a growth mindset or a fixed 
mindset (Dweck, 2016). Students with a growth mindset saw 
these labels as descriptors of where they 
were, while students with fixed mindsets 
saw them as who they were—even when 
temporal or positional language such as 
not yet or on the way were being used. This 
is a problem. By replacing this language 
with the arrow, even students with a fixed 
mindset began to see the feedback as a 
descriptor of where they were.

4. Reduction in Language

 The fourth visible difference is the absence of language in the 
middle column. When we were working with three-column 
rubrics with language in each column, the students treated 
each column as a discrete level of the competency being 
evaluated. So, when they were asked to self-evaluate their 
group’s competency, they highlighted their performance as 
fitting in one of the three columns (see Figure 12.4). This is 
how they had been evaluated on four-column rubrics, so it 
made sense that they would do the same on a three-column 
rubric. When we removed the language in the middle 
column, however, their way of self-evaluating completely 
changed. Students no longer thought of the rubric as a 
collection of discrete levels, but rather as a 
continuum with the first and third columns 
acting as endpoints, and the way they 
highlighted reflected this (see Figure 12.5). 
Even students who had previously used 
three-column rubrics for self-evaluation 
almost seamlessly switched to seeing this as a 
continuum.

Many students were 
seeing the headings 
in the initial rubric as 
descriptions of who 
they are, rather than 

where they are.

Students no longer 
thought of the rubric 

as a collection of 
discrete levels, but 

rather as a continuum.
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• closed to others’ ideas

• disrespectful of others

• actively excluding

• hogging the marker

• discouraging

• open to some ideas

• indifferent to others

• working with those that
are involved

• willing to give up marker 
when others ask for it

• unconcerned about how
the group is doing

• open to others’ ideas

• respectful of others

• actively inclusive

• sharing the marker

• encouraging

Figure 12.4 Highlighted collaboration rubric with language in all three columns.

Figure 12.5 Highlighted collaboration rubric with language in two end columns.

5. Reduction in Number of Competencies Assessed

 You may have also noted there was not only a reduction 
in language in general, but a reduction in the number of 
competencies being assessed in a single rubric. Whereas the four-
column rubrics we were seeing tended to try to evaluate three, 
four, or even five competencies at a time, the rubrics in Figures 
12.2 and 12.3 only evaluate one. And it does so using indicators 
that are more straightforward and approachable to students. This 
is because of how this rubric was created and used.

Creating the Rubric

Most of the rubrics we were initially looking at were created by teachers, 
teaching organizations, publishers, or ministries/departments of education. 
The rubrics in Figures 12.2 and 12.3 were created with and by the students 
who were going to be evaluated by them. This is not a new idea.

• closed to others’ ideas

• disrespectful of others

• actively excluding

• hogging the marker

• discouraging

• open to others’ ideas

• respectful of others

• actively inclusive

• sharing the marker

• encouraging
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The practice of having students coconstruct 
success criteria, scoring guides, and rubrics 
has been around for a long time (Davies & 
Herbst, 2013; Staples, 2007). The purpose of 
coconstructing a rubric is the ownership that 
happens when students see that they have 
a voice in what will be evaluated and how 
they will be evaluated. Coconstruction of 
rubrics allows for the emergence of language 
and terminology that, although unique and 
potentially idiosyncratic, is clear to the students who had a hand in 
creating it. That doesn’t mean we can’t look at other instruments for 
inspiration and guidance, but we need to go through the process of 
coconstruction with our students. Our research on using rubrics in 
thinking classrooms confirmed this over and over again.

In the thinking classroom setting, the way this looks is amazingly 
streamlined and time efficient, and it begins at the end of a lesson 
where you see a competency lacking.

Teacher There were some really interesting answers 
emerging from your group work today. But I 
noticed that a lot of you were giving up quite 
easily. You didn’t have very good perseverance. 
So, what I would like to know is, what does good 
perseverance look like? [Teacher draws a T-chart 
on the board and writes GOOD on the top of the 
right column (see Figure 12.6).]

Student Not giving up when it gets tough. [Teacher writes 
this under the GOOD heading.]

Student Looking around when you get stuck.

Teacher Looking for what?

Student A hint. Looking around for a hint when you are 
stuck. [Teacher writes this on the board.]

Student Asking the teacher for help. [Teacher writes this on 
the board.]

 . . .

Teacher Ok. So, what does bad perseverance look like? 
[Teacher writes BAD at the top of the left column.]

Student Giving up right away.

Teacher Right away?

Coconstruction of rubrics 
allows for the emergence of 
language and terminology 
that, although unique and 
potentially idiosyncratic, is 
clear to the students who 
had a hand in creating it.
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Student Ok. Just giving up.

Teacher When?

Student As soon as we get stuck or it gets hard. [Teacher 
writes this on the board.]

 . . .

What is interesting about this process is that no matter how lacking 
a class may be in demonstrating an observable competency, they can 
always generate a list of indicators of what it would look like to have 
that competency. In the hundreds of times this has been tried, this has 
always been true—even if students don’t exhibit the desired behavior, 
they know what the desired behavior looks like.

Figure 12.6 Coconstructed T-chart for developing perseverance rubric.

Before the next class, the indicators in this T-chart are then used by 
the teacher to build a rubric like the one in Figure 12.2 or 12.3—
depending on the grade. This is not to say that we take all of their 
suggested indicators, or that we keep the order the same. But, what 
we do take, we take verbatim from what is in the T-chart. As you 
see in the script, our chance to massage verbiage occurs as we fill 
the T-chart, not after. The students need to see, as much as possible, 
that it is their ideas and their language that have contributed to the 
formation of the rubric. This can be heightened if, during the next 
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class, they can see the new rubric and the original T-chart at the same 
time. So, if you can leave it on the board, great. Otherwise, show them 
a picture of the T-chart when you present them with the rubric that 
they had a hand in cocreating.

As the rubric will, in essence, be a series of indicators each of which 
is on a continuum, it is also important to select language from the 
T-chart that is dichotomous in nature. As you can see in Figures 12.2 
and 12.3, each good indicator on the right is paired with an opposing 
bad indicator on the left (open to other’s ideas—closed to other’s 
ideas). Students are not necessarily thinking about this when they are 
offering suggestions for what goes into the T-chart. So, you may need 
to suggest that they think about what the opposite bad is for each 
statement in the good column. This is not to say that each suggestion 
will have a natural opposite. What is important is that the indicators 
that make it into the final rubric are dichotomous.

Using the Rubric

How you present the rubric, and how you use it, turned out to be 
just as important as how it was created. For Grades 4–12 we found it 
worked best if it could look something like this:

Teacher So, yesterday you helped me create this T-chart. 
After school I took that chart and made it into 
a rubric. [Teacher projects the rubric.] You will 
see that one of these rubrics is taped up at each 
vertical surface. This is because today, while you 
are working at the boards, I will be evaluating three 
groups using this rubric.

Why only three groups? The answer to this is simple—you only 
have time to do three groups. Keep in mind, you are still having to 
manage flow and prepare for consolidation. It is important that you 
do not compromise your role as the teacher in the thinking classroom 
just to be an evaluator. This is still a thinking space that needs your 
stewardship.

For younger grades (K–3) we found that the introduction needed to 
be a little bit different.

Teacher So, yesterday you helped me create this T-chart. 
After school I took that chart and made it into a 
rubric. [Teacher projects the rubric.] Let’s go over 
it together so we all understand what each part 
means. [. . .] You will see that one of these rubrics is 
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taped up at each vertical surface. This is because 
today, while you are working at the boards, I expect 
all of you to behave like students in these pictures 
[teacher points at the right column].

Regardless, the perseverance in the room that day will be through the 
roof. And not because of the specter of evaluation, but because the 
coconstructed rubric makes it clear, to every student and every group, 
what is expected of them that day. The fact that you are evaluating 
three groups is only necessary to show that you are, truly, evaluating 
what you value.

At the end of the time spent on the boards, you 
give every group a highlighter and ask them to 
self-evaluate how well their group persevered 
that day. When they are done, give the three 
groups that you were evaluating (in Grades 4–12) 
the rubrics that you highlighted for them. The 
total time you will have spent on cocreating, 
presenting, and using this rubric will be less than 
15 minutes—but the transformational changes in 

your students will be monumental. Every time we have done this, the 
changes in student behavior around whatever competency we choose 
to focus on, irrespective of how poor it was the day before, is huge. Once 
students see what behaviors are expected, and that these behaviors are 
valued, the students begin to see them as valuable as well. And when 
these competencies improve so does your thinking classroom.

Should we be recording how each group did? If not, why would 
the students care—how would they see that we value it?

This is good question. And it was something that we wondered as 
well. We are so used to using grades as the carrot or stick—

depending on the student—that we use to motivate student behavior. 
What we learned from the research on rubrics is that students see that 
we value something if we are willing to spend grades on it—or if we 
are willing to spend time on it. They know that time is limited and, as 
such, it is valuable. And if you are willing to give some of it up to focus 
on their perseverance—or collaboration, or risk taking, or whatever 
behavior you want to focus on—then it must be valuable. This is not 

Once students see what 
behaviors are expected, 
and that these behaviors 
are valued, the students 

begin to see them as 
valuable as well.
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to say that you can’t record their performance in 
some way. What is important, however, is that you 
do not let them see how you do it. Our research 
clearly showed that if you put a number or a letter on 
a rubric, then the students ignore all other aspects of 
the feedback that the rubric affords. Race (2010) as 
well as others have observed the same phenomenon 
across a variety of settings. Numbers and letters go 
in your grade book—not on the rubric.

If it is true that the students see something as valuable if we spend 
time on it, why do we even have to bother saying we will evaluate 

three groups?
What we learned is that students in Grades 
4–12 are often so used to value being 

projected through the collection of grades that 
they, themselves, don’t know any other way to 
gauge value. This is more prevalent in high 
school students, but we saw it to some degree in 
students as young as Grade 4. When you state 
that you are evaluating three groups, they see 
that you are valuing these groups’ behavior 
through grades. When they self-evaluate their 
performance and see how valuable this feedback 
is, then they begin to see that there is value inherent in the process 
and the time spent on it. So, after two or three uses of rubrics in your 
classroom, you can drop the pretense of evaluating three groups.

How often should we be cocreating and using rubrics?

You cocreate a rubric whenever there is a behavior that you 
would like to improve within the room. Once you cocreate it, you 

need to use it right away and for two or three lessons in a row to really 
show that you value it. Then you can take a break from it for a while 
and only use the rubric once in a while, or when you see that it is 
needed. For example, if you see a particular group not persevering, 
just grab a perseverance rubric and tape it up on their vertical surface. 
This will signal to that group that you are not impressed with their 
behavior and that you will be watching them while at the same time 
communicating exactly what it is that you will be watching for. And 
once in a while you will see a group member pulling out an old rubric 

Students see that we 
value something if we 

are willing to spend 
grades on it—or if we 
are willing to spend 

time on it.

When they self-evaluate 
their performance and 
see how valuable this 
feedback is, then they 
begin to see that there 
is value inherent in the 
process and the time 

spent on it.
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for their group because that individual, or the group as a whole, is 
aware that they aren’t behaving as they should.

You mentioned that these new rubrics should only evaluate one 
competency at a time, but you didn’t specify how many indicators 

within the rubric to look for. The example you gave in Figures 12.2 
and 12.3 has five. And then the example of the T-chart in Figure 12.6 
looks like it can end up with many more. Is there an optimal number 
of indicators that the rubric should have?

We found that five was the maximum you should have. Beyond 
that, the rubric either starts to get redundant, or it begins to lose 

focus. It’s true that the T-chart in Figure 12.6 will eventually have 
many more than five indicators. This means that you are going to 
have to be selective as you choose which are the most important to 
include in the rubric. Pick the ones most on point that are also most 
clear to the students.

Is it really true that K–1 students are not ready to see these rubrics 
as a continuum and only see their behavior as fitting in one 

column or the other?

Yes and no. From a developmental perspective, nuance and 
subtlety are just beginning to emerge within this age group. But 

how fast it develops depends a lot on what kinds of educational 
experiences and how much exposure to the two-column rubrics they 
have had. We saw Grade 1 students who, by the end of the school year, 
were able to start using the rubric in Figure 12.3 as a continuum.

You talked about these coconstructed rubrics as observational—
to be used only for evaluating students’ visible in-the-moment 

behaviors. Can I also use them to evaluate students’ producibles—
things that they hand in?

Yes—but the process of creating them is slightly different. One of 
the things we learned from the research is that, regardless of how 

poor a class may be around an observable competency such as 
perseverance or collaboration, they can always tell us what it looks 
like to be good at it. The same is not true for competencies that are 
evaluated through producibles. For example, if we gather students at 
the board and ask them to tell us what a good problem-solving 
solution looks like, or a good proof, they cannot tell us—at least not 
with the same confidence as when we ask about an observational 
behavior. You need to begin this process by having them look at 
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exemplars. You give each group the same three exemplars of, for 
example, a problem-solving solution. One of these examples is very 
poor, one is very good, and one is in the middle. You ask them, as a 
group, to put these exemplars in order from worst to best and then 
discuss among themselves what it is that makes the good one good 
and the poor one poor. Then, when you gather the students at the 
board to coconstruct the T-chart, they have things in mind that they 
can offer. A small nuance that is important when using exemplars is 
to, as much as possible, make the middle exemplar the longest 
exemplar. This will push the students to discuss quality over quantity.

OK—competencies and producibles aside, how will this help me 
evaluate my students’ attainment of content?

It won’t. This chapter, and the rubrics discussed here, are an 
answer to the question of how we show, through evaluation, that 

we value competencies like collaboration, perseverance, risk taking, 
and so on. This is not to say that these rubrics cannot be adapted to 
evaluate attainment of content—we just did not pursue that. Having 
said that, Chapter 13 looks at how we can help students self-assess 
how they are doing with the attainment of content, and Chapter 14 
looks at how we can grade students on their attainment of content—
while at the same time increasing student thinking and engagement.

You talk about these rubrics as evaluations. Shouldn’t they be 
called assessments?

In the assessment and evaluation literature, assessment is often 
defined as being formative, and evaluation is defined as being 

summative. You will see in the next two chapters that this dichotomy 
eventually collapses in on itself. All assessment and evaluation should 
be formative; some of it will also be summative. Likewise, I do not 
find the distinction between assessment or evaluation of, for, or as 
learning to be of much help. All assessment and evaluation should be 
for learning, and some of it will be of learning. And all assessment and 
evaluation should be as learning—as it was in this chapter with the 
coconstruction of the rubric. Taken together, I do not distinguish 
between assessment and evaluation, and I use the terms 
interchangeably. In this chapter I used evaluation because of its close 
connection to values and the prompting question around what it is we 
value in our students.
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Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. If you have previously used a rubric that has more than three 
columns, take a good look at it, and see if you see language 
that is ambiguous and not helpful for moving students from 
one column to the next. If that rubric were scrambled, do you 
think you could unscramble it?

3. Think about some competencies that you feel your students 
need to improve on. Which of these do you think you should 
coconstruct a rubric for first?

Summary



227CHAPTER TWELVE | WHAT WE CHOOSE TO EVALUATE IN A THINKING CLASSROOM

4. In this chapter I mentioned that it is easiest to coconstruct 
a rubric right after an experience in which the class was 
deficient in the particular competency you want to focus 
on. With this in mind, think of some experiences that you 
can manufacture that will accentuate the deficiency you 
want to address first. For example, if you want to focus on 
perseverance, you can begin by giving them a task that is 
tempting to give up on, but is solvable with time and effort.

5. In the FAQ I mentioned that it is possible to coconstruct 
rubrics for producibles. What kind of producibles do you 
use that you would like your students to get better at? What 
would the exemplars look like?

6. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
The following tasks have been selected because they require a lot of 
perseverance on the part of the students and, therefore, would be a 
perfect precursor to coconstructing a perseverance rubric.

Grades K–3: How many 7s?

If I were to write the numbers from 1 to 100, how many times would 
I use the digit 7? What if I wrote 1 to 1,000? How many times would 
I use the digit 0?
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Grades 4–9: Country road

A country road is 27 miles long and goes all the way around a lake, 
connecting the six cottages that are next to the lake. Two of the 
cottages are 1 mile apart (along the road). Two cottages are 2 miles 
apart, two are 3 miles apart, two are 4 miles apart, …, two are 25 miles 
apart, and two are 26 miles apart. How are the cottages distributed 
along the road? Find a second way to distribute them.
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Grades 10–12: Pirate diamond

A band of nine pirates is going to disband. They have divided up 
all of their gold, but there remains one giant diamond that cannot 
be divided. To decide who gets it, the captain puts all of the pirates 
(including himself) in a circle. Then he points at one person to begin. 
This person steps out of the circle, takes his gold, and leaves. The 
person on his left stays in the circle, but the next person steps out. 
This continues with every second pirate leaving until there is only 
one left. Who should the captain point at if he wants to make sure he 
gets to keep the diamond for himself? What if there were 10 pirates? 
11 pirates? N pirates?

Source: The pirate diamond task is an adaption of the “Josephus problem.”
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As you read in the previous chapter, the assessment and evaluation 
literature often draws a distinct line between assessment and 
evaluation. It generally defines assessment as being formative while it 
defines evaluation as being summative. I argue that this distinction is 
not really helpful, because in reality all assessment and all evaluation 
should be formative, and some of it will also be summative. This is why 
you’ll see the terms assessment and evaluation used interchangeably 
within this book.

In the previous chapter we looked at the assessment of competencies 
and how the clear communication of competencies as valuable 
(through evaluation) can profoundly affect students’ behaviors in 
the thinking classroom. In this chapter, and the next, we will look at 
the assessment of content and how, again, clear communication can 
have a profound impact on student behaviors. While Chapter 14 will 
focus on summative assessment of content, this chapter focuses on 
formative assessment. By the end of this chapter you will learn that 
if we, as teachers, are careful about what and how we communicate 
with our students, then we will see not only significant improvements 
in students’ abilities to think about their own learning, but also 
significant improvements in students’ attainment of content.

The Issue
Whether formative or summative, 
assessment is fundamentally 
about the communication of 

information. For much of the 20th century, 
this information was seen, almost exclusively, 
as flowing from the student to the teacher for 
the dual purposes of informing teaching and 
producing a grade. The methods used to collect 
this information were either formal (tests, 
quizzes, assignments, projects, presentations, 
portfolios, etc.) or informal (observation, 
conversations, etc.). Whereas grading was typically informed by the 
more formal means of assessment, teaching was informed by both 
formal and informal means.

In the last 20 years, however, there has been increasing attention 
paid to assessment practices wherein the flow of information is 
reversed, flowing from the teacher to the student, for the purpose of 
informing learning. Like the information that informs teaching and/

Formative 
assessment: is 

the gathering of 
information for 

the purposes of 
informing teaching 

and learning.

Summative 
evaluation: is 
the gathering 
of information 

for the purposes 
of grading and 

reporting.

For much of the 20th 
century, assessment was 
seen, almost exclusively, 
as the flow of information 
from student to teacher 
for the dual purposes of 
informing teaching and 

producing a grade.
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or grading, that which informs learning 
is communicated both formally and 
informally, often relying on the same 
methods mentioned above.

For example, when a student completes 
a test or a quiz and the teacher grades 
it, how that student performed informs 
the teacher of what they need to work 
on with that student. When that graded 

test or quiz is returned, it likewise informs the student what it is 
they need to work on. Similarly, if a teacher has a conversation with 
a student, that teacher is collecting information about what that 
student does or does not understand and what they can or cannot do. 
If, during this conversation, the teacher provides feedback about what 
they gleaned from the interaction, then the student is likewise being 
informed about their own understanding. In either case, the teacher 
can then use the information to inform their teaching, and the student 
can use it to inform their learning.

The Problem
The problem is that, although the information that is 
flowing from the student to the teacher is comparable to 

the information that is flowing from the teacher to the student, the 
recipients of the information and what they can make of it vary greatly. 
The teacher is interpreting the information against a background 

of full knowledge and understanding of 
the concept or concepts in question, a clear 
picture of what comes next, and a rich history 
of having taught this same concept many 
times. The student, on the other hand, has an 
incomplete—and maybe inaccurate—picture 
of the concept, has no idea what it is leading to, 
and is learning it for the first time. How could 
the same information possibly inform them in 
the same way?

I’ll give a very simple example of this. I interviewed students in many 
different mathematics classes at many different grade levels just as 
they were finishing up a unit of study. I asked just one question.

In the last 20 years there has 
been increasing attention paid 

to assessment practices wherein 
the flow of information is 

reversed, transmitting from the 
teacher to the student, for the 
purpose of informing learning.

Although the information 
that is flowing to the 

student is the same as 
that flowing to the teacher, 

the recipients of the 
information and what they 
can make of it vary greatly.
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Researcher So, you just finished the unit on _____. Was that 
unit just one big topic, or was it a collection of a 
bunch of smaller topics?

I have never asked a question that is so predictive of student 
performance on a unit test. About 15% of the students told me that 
the unit they just finished was made up of a number of subtopics, and 
they were able to name or describe what those subtopics were. These 
students, for the most part, scored above 90% on the upcoming test. 
There was a group that could tell me that there were subtopics, but 
they were not able to completely delineate them or describe them. 
These students tended to score between 75% and 90%. The rest of the 
students all said that the unit was just one big topic. These students 
tended to score below 75%.

How can a student in this last category—who, for example, sees 
subtraction of two-digit numbers as one big topic—possibly make 
sense of feedback that they still need to work on subtracting two-
digit numbers where decomposition is needed? Contrast this with 
how clearly you, as a teacher, view a unit of study as a collection of 
subtopics, sections, and/or special cases and how this allows you to 
clearly see that this is exactly what this student needs to work on. 
Put in a different way, information communicated from a teacher to 
a student who sees the topic as one big unit will only inform that 
student of what it is that they can do; but because they don’t have 
a clear picture of the whole unit and all its 
subtopics, they cannot see what there is still 
left to learn. The teacher, on the other hand, 
with their greater sense of the scope and scale 
of the topic, can use the information that is 
communicated from the student to determine 
what that student can do AND what they 
cannot yet do. In order for assessment to 
equally inform teaching and learning, we need 
to find ways to help students see mathematical 
topics as collections of subtopics, sections, 
and/or special cases the way teachers do, and 
to use this knowledge to inform themselves 
about what it is they can and cannot yet do.

Information communicated 
from the teacher to a 

student, in many cases, can 
only inform that student 
of what it is that they can 
do, but the teacher can 
use the information that 
is communicated from 

the student to determine 
what that student can AND 

cannot yet do.



234 BUILDING THINKING CLASSROOMS IN MATHEMATICS

Toward a Thinking 
Classroom

For someone to be able to navigate, by land or by sea, they need two 
pieces of information—where they are and where they are going. 
Both pieces of information are vital and of equal value. If they don’t 
know where they are going, they are destined to get lost. And if they 
don’t know where they are, well, then they are already lost. The same 
is true of students trying to navigate their own learning—they need 
to know where they are and where they are going. In the context of a 
thinking classroom—or any classroom—where they are is what they 
understand, know, and/or are able to do. And where they are going, 
within the scope of a unit of study, is what they have not yet learned, 
don’t yet understand, and/or are not yet able to do. Frey, Hattie, and 
Fisher (2018) refer to students who can navigate their learning in 
these ways as “assessment capable visible learners.”

To help students navigate their learning, 
then, the information we need to 
transmit to them is the information that 
helps them know not only what they 
know, but also what they don’t know. 
And to do that, we need to first help 
them to see what the subtopics are that 
make up the background against which 
we assess what they know and what 

they don’t know. To achieve this, we experimented with feedback on 
tests, quizzes, and check-your-understanding questions. What we 
found in the end, however, was that the nature of the feedback that 
we provided was important, but not as important as how we help 
students to retain and organize the feedback. This, coupled with the 
idea of trying to help students know where they are and where they 
are going, allowed us to eventually converge on the creation and use 
of instruments like the ones in Figures 13.1, 13.2, and 13.3.

To help students navigate their 
learning, the information we 

need to communicate to them is 
the information that helps them 
know not only what they know, 
but also what they don’t know.
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Figure 13.1 Instrument for navigating where you are and where you are going for 
repeating patterns.

Figure 13.2 Instrument for navigating where you are and where you are going for additive 
number patterns.
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These navigation instruments are created 
by the teacher and are, essentially, a way for 
students to self-evaluate their performance 
on an individual quiz, review test, or set of 
check-your-understanding questions. In 
each example, the leftmost column is a list 
of subtopics for a specific unit of study and 
constitutes the list of outcomes within that 
unit. These can come from the curriculum, 

the textbook, or from a teacher’s own understanding of what needs to 
be learned. What we learned was that being explicit about the list of 
outcomes that constitute a unit of study helps students understand that, 
for example, fractions is not one big topic, but a collection of subtopics.

Each of these subtopics (or outcomes) can be further broken down by 
conceptual complexity (basic, intermediate, and advanced). Take for 
example, this list of adding fraction questions:

1. 1
5 + 35

2. 1
4 + 38

3. 3
5 + 17

Being explicit about the list 
of outcomes that constitute 

a unit of study helps 
students understand that 
a topic is comprised of a 
collection of subtopics.

Figure 13.3 Instrument for navigating where you are and where you 
are going for fractions.
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You will immediately recognize that this is not a random list 
of questions. Although these all require a student to add two 
fractions, there is a marked difference in the skills, knowledge, and 
understandings needed to answer each question. How a student 
performs on each of these provides distinct information regarding 
whether their knowledge, skills, and abilities are at the basic, 
intermediate, or advanced complexity level. Can they add fractions 
with the same denominator (basic)? Can they add fractions where 
the denominators are different, but one is a multiple of the other 
(intermediate)? Can they add fractions where the denominators share 
no common factors (advanced)? Which of these questions they can 
successfully answer communicates different information about their 
level of mastery of the outcome adding fractions and, thus, needs to 
be differentiated from each other. The three rightmost columns in the 
navigation instruments (Figures 13.1, 13.2, 13.3) do just that.

Once this table has been created, the teacher populates it with 
questions (Figures 13.1 and 13.2) or question numbers (Figure 13.3) 
from the quiz, review test, or check-your-understanding questions 
such that each question in the table is situated within the correct 
outcome and complexity level. Note that some outcomes do not have 
all the complexity levels. For example, transfer a repeating pattern 
(Figure 13.1) only exists at the basic level. Conversely, solve contextual 
problems involving fractions (Figure 13.3) does not even have a basic 
level. These omissions are represented by blocking out the irrelevant 
cells with shading, as in Figures 13.1 and 13.3. Likewise, if a question 
requires students to draw on multiple outcomes to solve it, such as 
Question 11 in Figure 13.3, then it sits in more than one place within 
the table.

This linking of a specific question to an outcome turned out to be vital. 
Although the language in the left-hand column is clear to us, students 
needed to see specific questions to fully understand what many of the 
outcomes meant. “Factoring a quadratic where the leading coefficient 
is equal to one” doesn’t mean a lot to many students until they see that 
this outcome is composed of questions that look like this:

• x2 + 5x + 6

• x2 + 14x + 24

• x2 - x + 12

• x2 - 6x - 16

• …
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Figure 13.4 Navigation instrument without the outcomes (repeating 
patterns).

Likewise, “adding two digit numbers with regrouping” may not make 
a lot of sense until they see that this is referring to questions that look 
like this:

• 23 + 58

• 67 + 71

• 39 + 86

• 48 + 62

• . . .

This turned out to be especially true in the primary grades, where 
students’ reading abilities are just beginning to emerge—and, even 
then, not for technical mathematical language. Depending on 
the grade, the teacher may wish to create navigation instruments 
without the leftmost column altogether (see Figures 13.4 and 13.5). 
Without the outcome to tell students what is expected, clarity must 
be communicated differently. In the following examples, this is done 
through the inclusion of an example for each outcome at the basic 
complexity level.
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Regardless of grade, linking specific questions to different complexity 
levels (basic, intermediate, and advanced) further helps students to 
more completely understand where their learning is with respect to a 
specific topic. For example (see Figures 13.2 and 13.5), being able to 
extend the pattern 1, 5, 9, … (intermediate) is not the same as being 
able to extend the pattern 41, 63, 85 … (advanced).

As mentioned, these navigation instruments 
can be used by a student to self-evaluate how 
they performed on a quiz, review test, or 
set of check-your-understanding questions. 
Regardless of how it is used, however, 
performance on a specific question goes 
beyond whether it is done correctly (✓) or 
incorrectly (✗). In order for the navigation 
instrument to work properly, students need 
to also distinguish between whether they 
completed a question with or without help, 
whether they got a question correct or if they 
made a silly mistake, and whether they got a 
question wrong as opposed to not trying it at all. Each of these cases 
carries unique information that is useful to track. To facilitate this 
nuanced tracking we used six symbols: ✓, S, H, G, ✗, and N.

Figure 13.5 Navigation instrument without the outcomes (additive 
number patterns).

Students need to also 
distinguish between 

whether they completed 
a question with or without 
help, whether they got a 

question correct or if they 
made a silly mistake, and 

whether they got a question 
wrong as opposed to not 

trying it at all.
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✓ questions that are attempted and answered correctly

S questions that are attempted and mostly answered correctly, 
but have a silly mistake

H questions that are attempted and answered correctly with 
help from the teacher or a peer

G questions that are answered correctly within a 
collaborative group

✗ questions that are attempted and answered incorrectly

N questions not attempted

For example, the clear demarcation of learning outcome and complexity 
level in Figure 13.3, coupled with the student’s nuanced records of how 
they performed on each question (see Figure 13.6) helps them to clearly 
see what they are able to do (where they are) and what they are not yet 
able to do (where they are going).

Figure 13.6 Student’s record of how they did on the fractions practice test.
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In our initial trials we used this navigation 
instrument as a way for students to record how they 
had performed on an end-of-unit review test—
with astonishing results. When these students then 
wrote their end-of-unit test, we saw an immediate 
improvement in grades of 10%–15% for 50%–70% 
of the students. For many of these students, the 
knowledge of where they were and where they were 
going was all they needed to help them improve.

Jamal I mean, now I know exactly what I 
need to work on.

And some students expressed that they finally understand how a unit 
of study is broken into subtopics and what those subtopics are.

Angel I finally get what we are doing.

Colleen Are you kidding me? This is great. I know what we 
are doing now.

The question is, why do we see improvements in only 50%–70% of 
the students? Well, some of your students already see the subtopics in 
what they are learning. And, for the most part, these students already 
know where they are in their learning of these subtopics. For them, 
this navigation instrument provides redundant information and, thus, 
produces no improvements. But this only accounts for 10%–20% of 
your students.

Another group on whom this navigation instrument was having 
very little impact were the students who didn’t appear to care 
about either their learning or their grade. Some of these students 
were performing at the lower end of their respective classes. For 
these students, information about where they are and where they 
are going wasn’t helping them to move forward. They already 
knew where they were, and they didn’t really have ambitions to go 
anywhere else. This is not to say that they couldn’t be helped. Just 
not in this way. This is also not to say that all students performing 
at the lower end of their class didn’t care. We saw big improvements 
in many students who were previously performing poorly—many 
moving from failing to passing a unit test. For these students, the 
unit of study was a complex collage of things they didn’t know how 
to do. The navigation instrument cut through all that noise and gave 
them a map that allowed them to focus only on the easy questions—
something they could see as achievable.

For many of these 
students, the knowledge 
of where they were and 
where they were going 
was all they needed to 

help them improve.
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However, when we accounted for the students who already saw the 
subtopics and the students who didn’t care, there were still students 
who did not improve. These students were mostly achieving B’s, 
and even the teacher had difficulty figuring out what bound this 
demographic together. It took interviews with these students to begin 
to untangle what was happening.

Jordy Hey, I got a B . . . without doing ANYTHING. Why 
would I want to put in a bunch of work to try 
to get an A?

Steph A B is good enough for my mom.

Chris I’m not one to go the extra mile.

It is not that this group doesn’t care. They do. But what they care 
about are grades that are “good enough” and what they don’t care 
about is “going the extra mile.” This group of students got to where 
they were with little effort and, for them, any more work would 
produce diminishing returns. From the perspective of economy of 
effort, these students are not wrong. If you can achieve your goal with 
zero effort, no improvement would be worth more effort. This way of 
thinking is difficult to argue with. These students care only about the 
grade—which brings us back to the idea of evaluating what we value 
(Chapter 12).

Who is left are the students who care about their learning and want 
to improve (50%–70%). For these students, a navigation instrument 
like the one in Figures 13.1, 13.2, 13.4, and 13.5 not only provides 
information about where they are and where they are going, but also 
does so in a way that is clear to them. And with this clarity they can 
begin to navigate their learning—to think about their learning.

Is this the only way for students to understand where they are 
and where they are going?

No. In fact, the rubric in Chapter 12 achieves this as well. 
Where the rubric is highlighted is where the students are on 

the continuum, and the descriptors in the right hand column is 
where they are going. A clothesline, often used in elementary 
school to display student work on a continuum, is another example 
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of a way to help students understand where they are and where 
they are going.

I give students lots of written feedback on their quizzes and tests 
to help them understand where they are in their learning. Isn’t 

that enough?

For the students who see the unit of study as subtopics, it is. They 
already have a very clear picture of where they are going, and 

your feedback is helping them understand where they are. For 
everyone else, your feedback is not enough. In our research into this 
topic, we found that, in general, teachers are good at providing 
feedback either about where students are or where they are going. 
Very few provide both. At least not in ways that are clear to the students.

For my whole career I have just given back quizzes and tests with 
each question graded. From this the students can see what they 

got right and what they got wrong. And for the ones they got wrong, 
what parts they got wrong and what grade they got on that question. 
Are you saying this is not helpful?

This is an example of what I call encrypted feedback. You, and the 
students who see all the subtopics, have the decryption key and 

can make sense of the feedback. For everyone else, however, all they 
see is scores and whether the score is good enough or not.

In my jurisdiction we wouldn’t use the headings of basic, intermediate, 
and advanced. We would instead use novice, emergent, and expert. 

Does that make a difference?

Yes, it makes a big difference. First, our research initially showed 
that easy, medium, and hard were the headings that the students 

found the clearest. And this whole chapter is about communicating 
with students in a clear way. After reading Tracy Zager’s (2017) book, 
we switched the headings to basic, 
intermediate, and advanced with no 
degradation of student clarity or 
preference. The advantage with basic, 
intermediate, and advanced was that 
teachers preferred these headings over 
easy, medium, and hard.

Second, whereas basic, intermediate, 
and advanced (and easy, medium, and 
hard) identify the complexity level of 

Whereas headings like basic, 
intermediate, and advanced (and 
easy, medium, and hard) identify 

the complexity level of the 
questions, headings like novice, 
emergent, and expert describe 

the abilities of students. This 
makes a big difference.
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the questions, headings like novice, emergent, and expert describe 
the abilities of students. This makes a big difference. You can label 
the headings any way you want, as long as you are talking about the 
complexity level of the questions or concepts, not the abilities of 
the students.

In Chapter 12 you dispensed with heading altogether and opted 
instead for an arrow. Why not do the same here?

We thought the same thing. So, we tried this in early iterations of 
the research into helping students see where they are and where 

they are going. It worked well to a point, but once students and 
teachers began to talk about the feedback and the complexity level of 
different outcomes, they spontaneously began to create names for the 
different columns (first, second, third; one, two, three; etc.). Once we 
realized that headings were inevitable, we began experimenting with 
different headings with the end result being what is in the navigation 
instrument in Figures 13.1, 13.2, 13.4, and 13.5.

I can think of a few of my students who would see the headings 
basic, intermediate, and advanced and just opt to do only the basic 

questions. Isn’t that a problem?

Before I answer this question I want to differentiate between the 
students that would use these headings as a way to do less work 

and less thinking and the students who would use these headings as a 
way to find an entry point into the learning of the topic. This question 
is about the former type of students. For these students this is a 
problem. But the problem is with the students, not with the navigation 
instrument. And, for this reason, the solution lies not in the 

instrument, but within the students. The 
real question is not how to change the 
instrument, but how to get students who 
don’t care about learning to care about 
learning. I won’t address this here, but I can 
say that for students who used these 
headings as an entry point into learning 
the topic, the heading offered them a place 
to start (basic). Once they clearly saw 
where they were and what came next 
(intermediate), they were more likely to 
want to take the next step—they wanted 
to level up.

For students who used these 
headings as an entry point 
into learning the topic, the 

heading offered them a 
place to start (basic). Once 

they clearly saw where they 
were and what came next 

(intermediate), they were more 
likely to want to take the next 
step—they wanted to level up.
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I notice that the pattern navigation instruments (Figures 13.1, 
13.2, 13.4, 13.5) have the actual questions in the cells, while the 

fraction navigation instrument (Figure 13.3) had question numbers. 
Is this because the pattern instrument is for primary grades, and the 
fraction instrument is for intermediate grades?

Not at all. Although we found that putting actual questions into 
the navigation instrument worked well for students of all grades, 

the length of some of the questions at higher grades made this 
prohibitive. However, using question numbers did not work well for 
primary students. The extra step of mapping a question number to a 
question and back to an outcome/complexity level was too much 
mapping. At the same time, a list of question numbers did not allow 
primary students to discern what bound a set of questions together to 
make an outcome.

In this chapter you mention that the teacher would populate the 
navigation instrument with the question numbers from the quiz, 

review test, or check-your-understanding questions. Wouldn’t it be 
better if the students were able to decide for themselves what outcome 
(or subtopic) and what complexity level a specific question was?

Yes. But our research showed that only about 10%–20% of 
students were able to do this right away. The rest needed several 

experiences with the teacher-populated navigation instrument before 
they were able to clearly identify a question as belonging to a specific 
subtopic and complexity level. The goal, of course, is that students get 
to this point. Just be ready for it to take most of the school year to 
achieve it.

Likewise, the goal is that the students begin to be able to identify 
and name subtopics on their own as they encounter them in a unit 
of study. This is especially important for students in Grade 12 and 
intending to go on to some form of postsecondary education. For 
them, being able to see subtopics in whatever they are studying will be 
a distinct benefit. But, again, do not expect that they can do this just 
because they are in Grade 12. However, we found that after repeated 
experiences with the navigation instrument, most students were able 
to disaggregate a unit of study into its relevant subtopics by the end 
of the school year.

I have a problem with all this splitting up of a unit of study—first 
into subtopics and then into different complexity levels. Don’t we 

want students to see mathematics as connected? This just feels like it 
is disconnecting and compartmentalizing mathematics.
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This is a very good question. We were concerned 
about this as well. But an interesting observation 

emerged from our research into the use of these types 
of navigation instruments to help students see where 
they are and where they are going. It turns out that for 
students to see mathematics topics (or subtopics) as 
connected, they must first see them as distinct. For 
example, multiplying mixed fractions (advanced) is 
not the exact same thing as multiplying proper 

fractions (basic). There are parts of these subtopics that are similar—
cancelling. But there are parts that are different—turning mixed 
fractions into improper fractions. What allows these subtopics to be 
seen as connected is recognizing what parts are similar while at the 
same time being cognizant of the parts that are different.

For the students who saw units of study as one big topic, there 
were no connections. For them it was a bunch of disconnected 
and discrete routines to memorize. Once they could clearly see the 
different complexity levels, they could begin to see how, for example, 
multiplying proper fractions is a special (and basic) case of multiplying 
mixed fractions (advanced). They needed to see the distinction to see 
the connections.

In my jurisdiction we have been told that we should be stating 
the learning goal, or outcome, for that lesson at the beginning of 

the lesson. Doesn’t that take care of helping students see a unit of 
study as a collection of subtopics?

In theory, yes. In reality, however, it doesn’t. Many of the 
students in our research who could not identify a unit of study 

as consisting of subtopics were in classes where the learning goal 
was stated at the beginning of every lesson. In part, this is because a 
learning goal stated prior to a learning experience makes very little 
sense to students. For example, saying to a Grade 10 student that 
“today we are going to learn how to factor trinomials where the 
leading coefficient is not one” makes as much sense as me saying to 

you that “in the next chapter we are going to learn how to 
find the minimum spanning tree of an edge-weighted 
undirected graph.” Until your students get to experience 
the mathematics and see how the different tasks in this 
subtopic are connected and are different from other 
tasks, these kinds of statements aren’t going to mean 
much. Names of concepts should come after experiences 
with concepts. This is, in part, why consolidation from 

Names of 
concepts should 

come after 
experiences 

with concepts.

For students to see 
mathematics topics 

(or subtopics) as 
connected, they 

must first see them 
as distinct.



247CHAPTER THIRTEEN | HOW WE USE FORMATIVE ASSESSMENT IN A THINKING CLASSROOM  

the bottom (Chapter 10) is so effective—it names ideas after students 
have experienced them.

By the way, in the next chapter we are not going to learn how to 
find the minimum spanning tree of an edge-weighted undirected 
graph. We are going to learn about the difference between the point-
gathering and data-gathering paradigms and how these paradigms 
have bifurcated our ideas around aggregating and grading.

Ultimately, this chapter is about self-assessment—you actually 
mention this in several places. How is this different from the 

many other forms of self-assessment that have been used for the last 
several decades?

Self-assessment, as used in classrooms 
for the last few decades, has largely been 

based on students’ opinions of their abilities. 
The navigation instrument, on the other 
hand, is a form of self-assessment that is 
based on data about students’ abilities. This, 
it turns out, makes a big difference not only 
about what self-assessment captures, but also 
how students use and perceive the feedback 
from the self-assessment. We found that 
students, for the most part, took the data 
coming out of the navigation instrument 
very seriously. The same was not true of the feedback coming out of 
opinion-based self-assessments.

In truth, it could be argued that opinion-based self-assessment is 
not a form of feedback at all. One student in our research referred to 
these types of self-assessments as “feedforward,” because students tell 
it what they can do, not the other way around.

Isn’t the use of this type of navigation instrument not just a type 
of outcomes-based assessment?

Yes and no. It is a form of outcomes-based assessment in that it is 
delineating outcomes for the purpose of assessment. But 

outcomes-based assessment is typically used to describe how 
outcomes are used in grading and reporting. Although this navigation 
instrument can be used for that purpose, this chapter is focused on 
how to communicate to students where they are and where they are 
going vis-à-vis outcomes and complexity levels. In this regard, you 
might say that it is a form of outcomes-based self-assessment. How to 

Self-assessment, as used 
in classrooms for the last 
few decades, has largely 
been based on students’ 

opinions of their abilities. The 
navigation instrument, on the 
other hand, is a form of self-
assessment that is based on 

data about students’ abilities.
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use this instrument additionally for the purposes of grading and 
reporting will be discussed in the next chapter.

How can I know that I am doing a good job helping my students 
know where they are and where they are going?

At the end of a unit of study, ask your students to make a review 
test on which they will get 100%. If they can do this, then they 

know what they know. Then ask them to make a review test on which 
they will get 50%. If they can do this, then they know what they know 
and they know what they don’t know.

You introduce the navigation instrument as something that you 
used to have students self-assess how they did on a review test. 

But you also mention that it can be used to self-assess check-your-
understanding questions. How are these different?

When we first developed this navigation instrument, we used it 
exclusively to self-assess on the review test at the end of a unit of 

study. Such a use tells students what they can and cannot do and 
highlights which outcomes and complexity levels they have encountered 
that they have yet to demonstrate attainment of. When the navigation 
instrument is used to self-assess check-your-understanding questions, 
it does so throughout the whole unit of study. In addition to showing 
students their attainment of outcomes and complexity levels, this way 
of using the navigation instrument can also show growth over time. So, 
a student who could not do outcome X the first time they encountered 
it in a check-your-understanding question can see, over time, how they 
are now able to do basic questions, intermediate questions, and 
eventually advanced questions for this outcome.

At no point in this chapter do you mention that this navigation 
instrument can be used by students to record how they did on a 

test. Why not?

Absolutely it can be used to record how they did on a test. I will 
speak to this more in the next chapter. From the perspective of 

communicating where you are and where you are going, however, 
recording how they did on a test is only useful if there is a retest. If 
there is no retest, and the test is the culminating experience for a unit 
of study, then there is nowhere else to go—so there is no need to keep 
navigating. On the other hand, if there is a retest or there are further 
opportunities for students to continue to demonstrate learning—
which I highly support—then the journey is still on, and students 
need to continue to navigate.
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I notice that you have three columns again—like in Chapter 12. 
Is this for the same reason?

Yes. It turns out that almost any subtopic can be divided into 
three complexity levels in a clean and unambiguous fashion. For 

some we can go to four or five levels, but then we are constantly 
arguing about which level some questions fall into. Three levels were 
the clearest for the teachers and for the students.

How can I use the navigation instrument with my students who 
have modified or adapted learning plans?

This navigation instrument is a great way to help students with 
modified or adapted learning plans to focus their, and your, 

attention. For example, you may have students for whom the learning 
plan is that they be able to do all the basic questions within a unit. 
Because the navigation instrument allows you to clearly identify 
these, the student has a clearer path forward.

Isn’t it a lot of work to set up and use this type of navigation 
instrument?

Not really. My experience is that if a teacher can sit down and 
create a unit test without referring to any resources, then they can 

create one of these navigation instruments off the top of their head. If 
it is the first time you are teaching a curriculum or you, yourself, do 
not see all the subtopics, then use your resources. Most resources are 
organized by subtopic and complexity level already—you just need to 
map them into the grid.
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Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. Which of your students see the subtopics within a unit and 
which do not?

3. Do you have some students who fall into that category where 
they are happy being good enough?

4. Can you think of ways in which you have previously 
received, or given, feedback that does not help a learner 
understand where they are and where they are going? If so, 
what information did the feedback communicate?
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5. Can you think of ways in which your feedback has ever been 
encrypted in a way that obfuscates where students are and 
where they are going?

6. Can you think of other ways in which you can help students 
understand where they are and where they are going?

7. If an assessment instrument does not communicate where 
students are and where they are going, then who does that 
instrument serve?

8. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
Construct a navigation instrument like the one in Figure 13.1 or 13.3 
for your next unit of study. You can lift the outcomes out of your 
curriculum or resource. Or, if you wish, you can decide for yourself 
what the outcomes should be. If you are choosing the latter option, 
there is a trick you can use to do it. Start by making an end-of-unit 
test. As you are making the test, every time you say to yourself, “I need 
one of these,” write down in your own words what one of these is—
for example, a growing pattern, adding two-digit numbers without 
regrouping, graphing a sinusoidal curve with a period other than 
2π, et cetera. At the same time, whenever you find yourself saying, 
“I need two of these, one of these, and one of those,” pause and ask 
yourself what differentiates these from those and how that places them 
at different complexity levels (basic, intermediate, and advanced).



CHAPTER 14
HOW WE GRADE IN A  

THINKING CLASSROOM
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As mentioned in the introduction, thinking classrooms emerged 
out of my efforts to break away from institutional norms and find 
new practices that not only occasion thinking, but also sustain 
thinking, particularly in—but not limited to—mathematics 
education. Constrained only by a set bell schedule and the four walls 
of a classroom, practices emerged that did just that. But no matter 
how much freedom we had to break the institutional norms within 
the classroom, three to four times a year we still had to dock with 
the mother ship and take all of the thinking and learning that was 
happening day-to-day in our thinking classrooms and report out a 
grade. In this chapter, you will learn how to do this in a way that 
not only honors the work that students are doing in a thinking 
classroom, but also continues to push your students to think about 
their own learning.

The Issue
If you have implemented each of the thinking practices 
in Chapters 1–11, you will be feeling a tension between 

how you are teaching your students and how you are assessing them. 
Some of this tension should have been relieved by what was discussed 
in Chapter 12 (evaluate what you value) and Chapter 13 (formative 
assessment). But still, your students are spending so much of their 
class time learning in groups that individual tests may be beginning 
to feel disingenuous. At the same time, you may have students for 
whom your day-to-day subjective observation about what they are 
capable of does not align with how they perform on tests. If this is the 
case, then you are likely still feeling some tensions between how you 
are teaching and how you are grading.

Your students are likely also feeling these tensions. One of the most 
enduring institutional norms over the last 100 years is that learning 
days should, at least in part, resemble testing days. This is why there 
has been such a pervasive drive in the history of education to have 
students work individually for, at least, part of every 
lesson—it’s a rehearsal for the test. Students know 
this. If learning days are now full of collaboration, 
and if learning days are rehearsal for tests, then 
why are tests still done individually? On many 
occasions in our research, students voiced exactly 
this question to the researchers. And in some 
cases, they asked it profusely and vociferously of 
their teachers.

If learning days are now 
full of collaboration, 

and if learning days are 
rehearsal for tests, then 
why are tests still done 

individually?
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To resolve these tensions, you may have been toying with the idea 
of changing the way your tests look, and you may be thinking about 
including collaboration in them in some shape or form. Alternatively, 
or additionally, you may also be toying with the idea of finding ways 
to grade some of the student learning you are seeing on a day-to-day 
basis in the thinking classroom.

The Problem
The problem is that when you get to the point where you want 
to make these changes in your grading practice, you face a 

new set of conundrums. If, for example, you move to using group 
quizzes or a group test, how do you distribute the grades that a group 
receives among its individual members? If one member of the group 

did nothing, or one member did all the work, is it then fair if 
everyone gets the same grade? Likewise, if you get to a point 

where you want to record and honor some of the day-
to-day work that you observe in a thinking classroom, 
how would you record that in your gradebook, and 
how would you merge it with your test grades? Even if 
you work in a jurisdiction where it is either suggested 
or required that you triangulate each student’s 

performance using observation, conversation, and 
product, these suggestions or mandates are often 

not accompanied by practical suggestions for how to 
implement them. Tensions beget tensions.

You are not wrong to feel this way. There is a real need to assess 
students collaboratively as well as through day-to-day observations 
in the thinking classroom. This need is supported by contemporary 
thinking on assessment and evaluation—see for example, O’Connor 
(2009) or Stiggins et al. (2006). And the tensions you are feeling exist, 
ultimately, because you are trying to make sense of how your 21st 
century thinking about grading can fit into a 20th century gradebook.

Grading practices over the last one hundred years can be seen as 
fitting into one of two paradigms—the point-gathering paradigm and 
the data-gathering paradigm.

The Point-Gathering Paradigm

The more enduring and more prevalent paradigm is what I call the 
point-gathering paradigm. I call it this because of the subtext that 
exists within the discourse in and around this practice.
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Teacher Don’t forget that there is a quiz tomorrow.

Subtext Tomorrow there are 20 points up for grabs—let’s see 
how many you get.

Teacher Today we are reviewing for Monday’s test.

Subtext Today I will be trying to help you get as many points as 
possible on Monday’s test.

Teacher This project is worth 20% of your final grade—so don’t 
leave it to the last minute.

Subtext I am giving you a chance here to get a LOT of points. 
Don’t lose any points by leaving it to the last minute.

In the point-gathering paradigm, every point that a student manages to 
accrue is recorded in your gradebook, and at reporting time you take 
the number of points a student earned and divide it by the number 
of points they could have earned (with some scaling), and out pops 
a percentage. Within this paradigm, if a student receives a zero on 
anything, it affects the denominator but not the 
numerator in this calculation. And if a student 
gets any bonus grades, this affects the numerator 
but not the denominator. I also refer to the point-
gathering paradigm as event-based grading 
because of the way these points are recorded in 
your gradebooks—with the name of the event 
(quiz, unit test, project, etc.) and the date on 
which the event occurred.

This was the dominant paradigm in the 20th 
century and, even now, is the most common 
practice used in mathematics classrooms in 
North America and many places around the 
world. Events-based grading is appealing and 
popular because it produces an objective grade 
that is believed to be an accurate reflection of 
what the student has learned. The problem 
is that, if the goal is to produce a grade that 
is reflective of what students have actually 
learned, then events-based grading is neither objective nor accurate.

The word objective means “expressing or dealing with facts or 
conditions as perceived without distortion by personal feelings, 
prejudices, or interpretations” (Merriam Webster, 2020). Lew 
Romagnano argues, in The Myth of Objectivity (2001), that because 
we have relationships with our students, built up over the year or 

There is a real need 
to assess students 

collaboratively as well 
as through day-to-day 

observations in the 
thinking classroom.

The problem is that, if the 
goal is to produce a grade 

that is reflective of what 
students have actually 
learned, then events-

based grading is neither 
objective nor accurate.
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years, we cannot avoid our appraisals being distorted by our personal 
feelings, prejudices, or interpretations. I’ll give you an example of how 
you can know this is true.

Assuming that you are currently using, or have in the past used, 
some form of event-based grading, when you hit the equal sign and 
the percentages are calculated, do you look back across the row to 
see if the percentage for each student makes sense? I’m willing to 
bet you do. We all do. We have all this subjective knowledge about 
our students built up over the course of the year. and we want to 
see if that subjective knowledge matches the “objective truth” of the 
percentage. If it matches, we feel good—our subjective evaluation 
has been validated. But what happens if it doesn’t? What do you do 
when you have a student who you know has been working very hard 
all term—doing extra work, coming in for help, et cetera—and they 
come up one percentage point below some threshold for a specific 
letter grade? Do you go back and play with the numbers a little bit 
to get the “objective” grade to match your subjective knowledge? If 
you do, you are implicitly recognizing the myth of objectivity. Even 
if you do nothing, but you feel bad about the misalignment between 
the objective grade and your subjective knowledge, you are grappling 
with the inherent flaws within the point gathering paradigm.

Romagnano (2001) further argues his point by drawing on both 
first- and second-hand data to show how inconsistent grading is on 
everything from a quiz all the way up to the SAT-I mathematics test. 
This inconsistency creates what is called in the sciences a measurement 
error. For example, the measurement error on the SAT-I mathematics 
test is 30 points. This means that if a student scores 470, we can say 
with 95% certainty that their score is somewhere between 410 and 
530 points. This is a huge measurement error. And it is on the SAT-I, 
one of the most tightly controlled assessments in the world.

What, then, does this say about measurement errors on classroom 
tests? Assuming that there are questions in that test wherein partial 
credits are given out, then there exists measurement error. To 
illustrate this Romagnano presents a student’s solution to a factoring 
quadratics question and discusses how a teacher may grade it. When 
he asks multiple teachers to grade this same solution out of 5, their 
responses are equally distributed across scores 2, 3, and 4.

This 40 percent variation is attributable to judgments 
that individual teachers made about the relative 
importance of each aspect of this student’s work 
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described previously. In other words, these scores are 
subjective. (Romagnano, 2001, p. 32)

These scores are subjective. Objectivity is a myth. Yet, the myth 
endures. And it leads to what I have come to call the tyranny of 
objectivity, which is the harm that we do with the points we have 
recorded for each student across a number of events. Believing that 
the points we record in our gradebooks are objective, we then further 
believe that the sum of these points convey truth—truth about what 
our students have learned. But this, too, is a myth.

Ken O’Connor (2009) illustrates this best by positioning grading in 
the context of sky diving—my own version of which goes something 
like this.

Let’s pretend that we are going sky diving at your local 
sky diving center. After the orientation and after you 
have signed all the waivers, you get to pick the employee 
that will pack your parachute. To help you make the 
decision, you are provided with the parachute-packing 
scores for each employee across several different tests 
over time (see Figure 14.1). Which employee do you want 
to have pack your parachute?

Figure 14.1 Parachute packers.

The obvious answer, of course, is Abigale. Although she was not 
good in the beginning, she showed steady improvement and is now 
consistently performing very well. Ironically, had the sky diving 
center treated these scores from a point-gathering perspective and 
provided us only with their final grade, the three employees would all 
have had the same grade.
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The Data-Gathering Paradigm

What O’Connor is highlighting with the 
parachute example is the difference between 
the point-gathering paradigm and what I 
call the data-gathering paradigm. Whereas 
the point-gathering approach would give the 
parachute packers all the same grade, analyzing 
this information as data gives us a different 
understanding of what has changed over 
time. If these three graphs were the data for 
three students in your class, we would say that 

Abigale has improved—she has learned. Isn’t this what we want from 
our students? Isn’t this our job as teachers—to help students learn? 
More than that, Abigale has shown mastery. Her success as a learner, 
and your success as a teacher, should be recognized in her grade. The 
fact that she didn’t know how to do something in the beginning is 
expected—she is learning, not learned, and she shouldn’t be punished 
for her early-not-knowing.

If we look at Ben and Charlie through a data-gathering lens as well, 
we quickly discern that something tragic has happened to Ben part 
way through the unit. His parents got divorced, or his grandmother 
died, or he got caught up with the wrong crowd. The same can be 
said about Charlie. Her inconstancy is cyclic. What is happening? 
I taught a Charlie once—her parents were divorced, and every two 
weeks she alternated who she lived with. In the weeks when she lived 
with one parent, she performed much better than the weeks when 
she lived with the other parent. The tyranny of objectivity that comes 
from point gathering ignores the very human elements of grading 
that are clearly evident in Ben and Charlie’s cases. We need to let 
the data talk to us, rather than allowing points to rule us. The data 
show us where the learning is and where the problems are. Looking 
at this as data, rather than points, allows us to ignore early-not-
knowing, to ignore outliers, and to fully acknowledge mastery when 
it occurs. The data-gathering paradigm is more commonly known 
as outcomes-based or standards-based assessment, or evidence-based 
grading, and is widely recognized as a more accurate, fair, and 
relevant way of grading.

The fact that she didn’t 
know how to do something 

in the beginning is 
expected—she is learning, 

not learned, and she 
shouldn’t be punished for 

her early-not-knowing.
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Toward a Thinking 
Classroom

If you want to start valuing the day-to-day evidence 
of learning you are witnessing in your thinking 
classroom and/or you wish to start evaluating 
students in groups, then you are going to have to 
make a paradigm shift. What you want to do is 
not feasible within a point-gathering system. You 
are going to have to start using a data-gathering 
system to get there. Whether you are just now 
ready to make this paradigm shift, or you made 
it a long time ago, the next challenge is how to capture data from all 
these different sources and record it in such a way that observational 
data can be integrated with test data and group data can be integrated 
with individual data.

In essence, the question we are trying to answer is, How do we know 
where students are in their learning? This question, it turns out, is very 
similar to the question we answered in the previous chapter—How can 
we help students to know where they are and where they are going? And 
the answer, it turns out, is the same—we need to use an instrument 
that delineates the learning outcomes and differentiates between the 
complexity levels of any given task (see Figures 14.2 and 14.3).

If you want to start 
valuing day-to-day 

learning evidence or 
how students work in 
groups, you’ll have to 

make a paradigm shift.

Figure 14.2 Instrument for recording student data on a repeating 
patterns unit.
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Figure 14.3 Instrument for recording student data on a fractions unit.

These elegantly simple instruments allow us to record all of our 
data in one place. Whether those data come from an observation, 
conversation, or a test, they are just data points within this table. 
And whether a data point comes from a student doing something 
individually or in a group, it is just a data point in the table. We don’t 
need to wrestle with what part of a group grade should be assigned to 
each student, or how much partial credit someone got on Question 5 
on the test. None of that matters. We are just gathering and recording 
data using the same six symbols as in the previous chapter: ✓, S, H, 
G, ✗, and N.

✓ is used when knowledge has been demonstrated individually

S is used when knowledge has been demonstrated individually, 
but with a silly mistake

H is used when knowledge has been demonstrated individually, 
but with help from the teacher or a peer

G is used when knowledge has been demonstrated 
within a group

✗ is used when a question has been attempted, but answered 
incorrectly

N is used when a question has not been attempted



261CHAPTER FOURTEEN | HOW WE GRADE IN A THINKING CLASSROOM 

Add to this the subscripts O and c for whether the data comes from an 
observation (✓

O
) or a conversation (✓c), and the data can now come 

from the day-to-day classroom evidence of learning. This is not to say 
that it cannot also come from a test or a quiz but, like the practice test 
in Chapter 13, a test or a quiz is no longer an aggregated instrument 
for which a single grade is produced. Rather, a test is a collection of 
discrete opportunities for students to demonstrate learning, and these 
demonstrations are recorded on the table in a disaggregated format.

Once this organizer is populated with data (see Figures 14.4 and 
14.5), you can use it to report out anecdotal comments, grades, or 
even percentages. For anecdotal reporting, the instrument easily and 
clearly helps you to structure your comments. For the student whose 
performance is recorded in Figure 14.4, you may say something like, 
“Benjamin is able to identify the core of basic repeating patterns but 
needs support to do so for more complex patterns,” and/or “Benjamin 
is working toward being able to independently extend intermediate 
level patterns,” and/or “Benjamin has repeatedly demonstrated the 
ability to fill in the blanks in basic and intermediate patterns, but is still 
working on being able to consistently do so for advanced patterns.”

Figure 14.4 Benjamin’s performance on the repeating patterns unit.
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Creating a Grade

To turn these records into a grade or a percentage requires us to 
decide how a student has performed on each outcome and give that 
performance a numerical value. We found that, in order to determine 
this value, we needed to follow two foundational principles:

1. Performance at the basic level is considered minimal 
attainment of the outcome. This means that a student who 
is able to show attainment at the basic level of each outcome 
would be deemed to have passed the unit.

2. The different attainment levels (basic, intermediate, and 
advanced) are backward compatible. This means that if a 
student can demonstrate attainment at the advanced level, 
then it is assumed that they have attained the basic and 
intermediate level. For example, if a student can add and 
subtract fractions with different denominators (advanced) it 
is assumed that they can also add and subtract fractions with 
the same denominator (basic).

In this system, adhering to the first principle results in the 
demonstration of basic level being worth 2 points, intermediate is 
worth 3 points, and advanced is worth 4 points. Using these particular 
point values gives a student who has demonstrated basic level 
attainment—and only basic level attainment—2 out of a possible 4 
points, which, when converted to a percentage, is 50%, which is a pass.

Adhering to the second principle means that the number of points a 
student receives for a particular outcome is determined by the highest 
complexity level they demonstrated—irrespective of what the data says 
about their performance at a lower complexity level. For example, if 
you have evidence that a student has mastered adding and subtracting 
fractions with different denominators, they receive 4 points even if 
you have evidence that they previously struggled with adding and 
subtracting fractions with the same denominator. As mentioned 
earlier, this shows that they have learned, and their learning and your 
teaching needs to be acknowledged—and celebrated.

The bigger question is what it means to demonstrate attainment 
within a certain complexity level. To answer this, we ran several 
experiments where we compared an individual student’s assessment 
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data (recorded in instruments such as those in Figures 14.2 and 14.3) 
to their teacher’s subjective impression (as gleaned from day-to-day 
observations of and conversations) of that same student. We did 
this with over 40 teachers and hundreds of students. What we were 
looking for was correspondence between the data and the subjective 
impressions of teachers. In particular, we were looking for the quantity 
and quality of data that was necessary for there to be correspondence. 
What we learned was that there was a delicate balance between too 
little and too much data.

For example, if Benjamin demonstrated attainment at the advanced 
level only once (see Figure 14.5), that corresponded with the teacher’s 
subjective assessment of that student’s attainment at that level less 
than 60% of the time. Conversely, if performance at the intermediate 
level was demonstrated five times (see Figure 14.5) it corresponded 
with the teacher’s subjective assessment 100% of the time. But it was 
felt by both the researcher and the teachers that this was too much 
evidence—there was too much redundancy. It turned out that tipping 
point is two consecutive demonstrations of attainment. That is, two 
positive data points were sufficient to match with teachers’ subjective 
assessments of a student provided that the two positive data points 
were consecutive. So, whereas ✓ ✓ was enough to show attainment, 
✓ ✗ ✓ was not—more data may be needed.

Figure 14.5 Benjamin’s performance on the repeating patterns unit.
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Figure 14.6 Alicia’s performance on the fractions unit.

So, if we take all of this together and look at Alicia’s performance on 
the fractions unit (Figure 14.6), we can begin to assign points for 
each outcome. On the first outcome, Alicia receives 2 points (out of 
a possible 2). On the next outcome she receives 4 points—she has 
demonstrated attainment at every level. For the next three outcomes 
she also receives 4s. Although she had a rough start for each of these, in 
the end she demonstrated mastery at the advanced level. The same is 
true of the sixth outcome—order of operations with proper and mixed 
fractions. Even though she was not able to demonstrate attainment at 
either the basic or intermediate levels, on the unit test she answered 
two of the advanced level questions for this outcome. That is to say, 
for this outcome, we can ignore all the early-not-knowing that Alicia 
demonstrated and celebrate the fact that she learned it in the end. On 
the seventh outcome, her performance is rather inconsistent. Even 
though she has shown that she can, from time to time, answer advanced-
level questions, the highest level of attainment demonstrated is at the 
intermediate level. Therefore, she receives a 3 for the seventh outcome. 
If these data were collected prior to the reporting cut off, you may wish 
to gather some more data on Alicia for this outcome, and the evidence 
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that is in Figure 14.6 may actually be a result of 
such efforts. For the last outcome, she again had 
a rough start, but of late has been performing 
well and receives 4 points. Taken together, Alicia 
has been awarded 29 out 30 possible points for 
this unit, which can then be translated into a 
percentage, a letter grade, or a level, depending on 
what your reporting mandate is.

With all this assignment of points you may be wondering if we are 
back in the point-gathering paradigm. The answer is no. There is no 
gathering of points here. There is only an analysis of data, the results 
of which are recorded as points only at a time mandated for reporting 
out. Until that time, the data live as data. If you are fortunate and work 
in a jurisdiction where reporting out is by spreadsheet, then a cleaned 
up version of the table in Figure 14.6 would be sent home indicating 
the level of complexity Alicia has achieved for each outcome.

Incidentally, had we been recording Alicia’s 
progress through a point-gathering paradigm, 
she would have collected 35 points out of a 
possible 67 points, which would have translated 
to a much lower grade on her report card. Alicia’s 
is an extreme case, but in our research we did this 
type of comparison for students in many different 
classrooms. In essence, what we did was take test 
and quiz data that teachers had recorded in an event-based gradebook 
and transposed them into instruments similar to those in Figures 
14.2 and 14.3. We then gave these anonymized grids back to that 
student’s teacher and asked the teacher to decide what they believed 
that student deserved. In approximately 80% of the cases, the teacher 
awarded a grade that was 10%–15% higher than they had originally 
awarded through their event-based gradebook. The reorganization of 
points into data allowed the teachers to let go of outliers and early-
not-knowing.

Even in cases such as Jennifer’s (see Figure 14.7), there was a significant 
improvement in the grade assigned from looking at her performance 
as points versus data. In a point-gathering system, Jennifer would 
have received 28 points out of a possible 76 points. This will result in 
a failing grade regardless of what kind of scaling is applied. In a data-
gathering system, however, Jennifer receives 22 out 30. This is a pass, 
and in some jurisdictions will result in a B or a C+.

We can ignore all the 
early-not-knowing that 

Alicia demonstrated and 
celebrate the fact that 

she learned it in the end.

The reorganization of 
points into data allowed 

the teachers to let go 
of outliers and early-

not-knowing.
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Figure 14.7 Jennifer’s performance on the fractions unit.

There are two main reasons that contribute to this disparity between 
Jennifer’s two possible grades:

1. The amount of data (or points) gathered at 
complexity levels that she just was not going to achieve. 
A total of 23 data points exists at the advanced level in 
outcomes 2–7. The point-gathering system repeatedly 
punishes Jennifer for not being able to do things 
she just cannot yet do. The data-gathering system 
ignores these.

2. The extent to which Jennifer’s teacher was willing to look for 
evidence of Jennifer’s learning. When she found areas that 
Jennifer was not performing well on, she worked with her 
(H), had conversations (G) with her as she tried it on her own, 
and tried to observe (O) her when she was solving tasks on 
her own or in groups. In fact, there are 15 instances where 
Jennifer’s teacher gathered data through conversations or 
observations. This is time intensive. But she does not need 

The point-gathering 
system repeatedly 
punishes Jennifer 
for not being able 
to do things she 

just cannot yet do.
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to do this for all her students. Most students will be like 
Alicia, and most of the data will come from more formal 
assessments like tests or quizzes. But you have students 
like Jennifer, students for whom you may need to spend 
more time. A data-gathering approach coupled with the 
instruments presented in this chapter allows for this.

These improvements, in concert with the those 
created by the changes presented in Chapter 13, 
resulted in a fundamental transformation of 
student performance in the thinking classroom. 
Not only do students now know where they 
are and where they are going, but teachers also 
have a clearer and cleaner picture of where 
students are vis-à-vis the expected outcomes 
of a curriculum. And when students know as 
much as you do about where they are and where 
they are going, an interesting thing begins to happen—they start 
thinking about their learning rather than their grades and, as they do 
so, grading becomes a byproduct of learning rather than the objective 
of learning.

You mentioned that there was a 10%–15% increase in the grades 
of 80% of students. Why only 80% of the students?

Some of the 20% of the students for whom this did not make 
much difference are already at the top of your class. This is not to 

say that they won’t improve through this paradigm shift; they just 
won’t improve by 10%–15%. The rest of the students for whom this 
shift did not make a difference defy description. It just turns out that 
the particular distribution of their data tells the same story in 
either paradigm.

Students start thinking 
about their learning rather 

than their grades and, 
as they do so, grading 

becomes a byproduct of 
learning rather than the 

objective of learning.
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Isn’t this just a type of grade inflation?

Not at all. By shifting to outcomes-based assessment, 
you avoid both the myth and the tyranny of objectivity 

and start to give grades that are more accurately a reflection 
of what your students have learned. Adherence to event-
based grading, if anything, is a form of grade deflation.

I work in a setting where the basic level of attainment is deemed 
to be equivalent to 60% or 70%. How do I show that?

The easiest way to do this is to change the values of the three 
columns from 2, 3, 4 to 3, 4, 5 or 5, 6, 7. This will position the 

basic level of attainment at 60% or 71%, respectively.

I work in a jurisdiction where we have to report out on students’ 
demonstrated ability to solve knowledge questions, application 

questions, and thinking questions. How do I use a data-gathering 
system to do that?

Knowledge, application, and thinking—like basic, intermediate, 
and advanced—are backward compatible. That is, for example, if 

a student can do a thinking question around multiplying two-digit 
numbers, then they must also have the knowledge to do so. Any time 
you have three complexity levels that are backward compatible, then 
you can apply the data-gathering system as it is presented in 
this chapter.

In the example you provide in Figures 14.6 and 14.7, all of the 
outcomes are weighted the same. But not all outcomes should be 

weighted the same. How does that work when you are trying to 
generate a grade?

If you think some outcomes should be worth more than others, 
you can add a scaling factor to them (see Figure 14.8). So, for 

example, if you think that definitions (Outcome 1) are worth only one 
point, then set it that way. Likewise, if you believe outcomes 7 and 8 
are worth twice as much as the other outcomes, those outcomes are 
now out of 8. The easiest thing to do is to still evaluate them out of 4 
and then double the points. The total for the unit would then be out 
of 37 rather than 30 as in Figures 14.6 and 14.7.

Adherence to 
event-based 

grading, if 
anything, is a form 
of grade deflation.



269CHAPTER FOURTEEN | HOW WE GRADE IN A THINKING CLASSROOM 

In the example you provide in Figures 14.6 and 14.7, all of the 
data are seen as equally weighted. I don’t think this should be the 

case. I want to value test data more than observational data. How do 
I do that?

This your prerogative. But I caution against blindly privileging 
some data over others across all students. This needs to be done 

on a student-by-student basis. When you wish to do this, I agree that 
it would be important to be able to see the differences in the data. This 
can be accomplished in two ways. One, you could color code your 
data such that one color is used for test and quiz data, one for 
observations, one for conversations, et cetera. The second method is 
to split each cell into two rows and record test and quiz data on one 
row and all other forms of data on the other.

I feel like this way of grading will take more time. Is that the case?

Not at all. It is true, however, that it takes a bit more time to 
record the data than in a point-gathering gradebook, but this is 

more than made up for by two time savers. First, you are no longer 

Figure 14.8 Instrument for recording student data on a fractions unit with scaling.
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grading with partial credits, which saves a lot of time. Second, you 
will grade less. When we mapped data from the event-based 
gradebook to a grid similar to the one in Figures 14.2–14.8 and gave 
it back to the teachers, every teacher made the same comment—I 
have way too much data. And it was true, there were a lot of redundant 
data, most of which represented unnecessary grading. In a data-
gathering paradigm you collect fewer data and use only the data you 
need to fill in missing information for the grade.

Does this mean that I may not grade every item on a test?

Correct. If, by the time a test is taken, a particular student only 
needs to show you evidence of being able to do the advanced 

types of questions, then those are the only ones you need to grade. 
Indeed, that student should know these are the data you are looking 
for and may choose to only do those questions. As mentioned, a test 
is no longer an aggregated event, but a convenient venue for gathering 
data on a variety of outcomes at a variety of complexity levels.

Does this mean there will not be a grade at the 
top of the test when it is returned to students?

Correct. As mentioned, a test is no longer an 
event. Rather, it is a collection of opportunities 

for students to evidence their learning. The data from 
the test live in a disaggregated form in your 
instruments and the students’ navigation instruments. 
It is only aggregated into a grade when you have 
analyzed the data.

So, if a student has already evidenced attainment 
for every outcome at every level, they don’t need 

to take the test?

Correct. Or, if you have a student for whom you already know the 
test will not give an accurate measure, you may choose to let 

them avoid it and base your grade solely on observations and 
conversations.

I have students who are operating at a much lower level than 
others in the class, how does this method of grading help me?

If you have a student that is still working on demonstrating their 
abilities on the basic level for each outcome, then give them only 

A test is no longer 
an event. Rather, 

it is a collection of 
opportunities for 

students to evidence 
their learning.
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that page of the test. If they complete it, you can ask them if they 
would like the next level, and so on. This means that you need to set 
up your tests to allow for this. If you do, this will help all your students 
know what part of the test they should be focusing on.

I have heard that many teachers who are doing thinking 
classrooms do group tests. How does that work?

How group testing looks can really vary. Some teachers make all 
quizzes group quizzes. Some teachers allow students to collaborate 

for select questions on a test or even all of a test. This collaboration 
can be on whiteboards or at desks and can result in a single test being 
produced by a group or, after collaboration, each student writing and 
submitting their own test paper. Any and all of these combinations 
are great. They substantially reduce student anxiety and value the 
collaborative work that happens day-to-day in a thinking classroom. 
And inside of a data-gathering paradigm, it is easy to record it as a 
group effort (G) and make sense of at reporting time.

Should I count data gathered in groups (G) as equivalent to data 
gathered individually?

This is up to you. Most teachers would view success in a group 
followed by success individually (G✓) as equivalent to consecutive 

individual success (✓ ✓). There is no contradiction here. However, if 
you have a positive group performance followed by an unsuccessful 
individual performance (G✗), this is a strong indicator that more data 
are needed before you can say, with certainty, that individual 
attainment has been achieved.

I agree with everything that is in this chapter and I am ready to 
make the paradigm shift. And the jurisdiction I work in is also 

encouraging us to move toward outcomes-based assessment. At the 
same time, however, they have a mandated online event-based 
gradebook that we have to use. How do I 
navigate that?

I have worked with many teachers who 
experience this exact same situation. I call 

this contradictory jurisdictional mandate the two-
headed monster, and it extends to all sorts of 
internal contradictions that exist within 
educational systems. This particular contradiction 
exists because your jurisdiction does not recognize 

Outcomes-based 
grading and events-
based grading are 

actually paradigmatically 
different, and not just 
different ways to do 

point gathering.
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that outcomes-based grading and events-based grading are actually 
paradigmatically different, and not just different ways to do point 
gathering. My first suggestion to resolve this is to find out the limits 
of the mandate for using the online gradebook. If it is just to report 
out final grades, you will be fine. If it is to keep regular records, then 
one of the things you can do is set each column to an outcome, weight 
it to zero, and record whether a student has achieved basic, 
intermediate, or advanced levels inside it. You can record these using 
2, 3, and 4 if you wish.

In my jurisdiction we are mandated to triangulate our data and 
gather grades of how students are performing through the 

framework of conversations, observations, and products (COP). 
Although what is in this chapter helps me in this regard, it appears 
that some students’ grades may still end up being the result of only 
products (tests).

The COP framework you speak of is a huge step forward in the 
way teachers are beginning to think about grading and the 

reporting out of grades. But, in the jurisdictions in which it is 
mandated, it is largely misunderstood. First, and foremost, it needs to 
be recognized that this framework comes out of the outcomes-based 
grading paradigm. Most jurisdictions that mandate this don’t make 
this clear, leaving teachers to try to figure out how to put these data 
into their events-based gradebooks. As a result, I have seen many 
cases of teachers creating columns in their gradebooks titled 
“Observation” and “Conversation,” in effect turning observation and 
conversation into events whose data are to be added to and averaged 
with test data. This is averaging data, which is not the same as 
triangulating data (see Figure 14.9).

Figure 14.9 The COP framework as triangulation of data.
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Triangulating data means that we are gathering 
data from multiple sources in order to seek 
correspondence within the data. Correspondence 
indicates that you are getting close to the truth 
about what a student has learned. So, if a student’s 
performance on a test corresponds with the 
evidence gathered in an observation, you have 
correspondence and you are close to having a 
true measure of what that student knows. Once 
you have correspondence between two forms of 
data, then you can stop. Additional data from 
the third data form will either be redundant and 
unnecessary or an outlier you can disregard. 
Only if the first two data forms do not produce 
correspondence will you need to go to the third.

So, if the correspondence is between a test and a conversation, the final 
grade will be equivalent to that of the grade the student received on 
the test. This is not to say that all the data come only from the test—it 
only means that equivalence, as a product of correspondence, exists.

Does this mean that I can report out on data that come only from 
conversations and observations?

Yes. Both the instruments presented in this chapter and the COP 
framework would allow that to happen. In fact, if you have a 

student who you know underperforms on tests, you can bypass the 
test altogether for that student.

I work in a jurisdiction where we are not allowed to include 
group work in a student’s final grade. But they require us to use 

the COP framework. In a thinking classroom, all observational data 
come from a group setting. How do I negotiate this?

First, I have a tough time imagining worthwhile observational 
data that do not come from a collaborative setting. Without the 

conversations that take place in a group, all we could do is observe a 
student silently doing something, the understanding behind which 
would be completely invisible to us. Second, your mandate likely does 
not prevent you from gathering group-generated data, only reporting 
out on it. Because you are seeking correspondence, and correspondence 
is, by definition, a type of redundancy, this is then an easy problem to 
resolve. If you have correspondence, for example, between a group 
observation and an individual test, then you report out only the grade 

Triangulating data means 
that we are gathering 

data from multiple 
sources in order to 

seek correspondence 
within the data. 

Correspondence 
indicates that you are 

getting close to the truth 
about what a student 

has learned.
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the student received on the test. If the correspondence is between 
group observations and individual conversations, then you report out 
only on the conversations.

Group tests and quizzes sound great, and I really like the COP 
framework, but my students have to eventually take an external 

standardized test set by the regional or federal government. If I use 
group tests as well as gather data through observations and 
conversations, will my students be prepared for this?

Students have been in several math courses before yours. And 
they are currently in many other courses aside from your math 

course. In most of those other courses, students have written 
individual tests. So, even if you do not do a single individual test in 
your course, it is highly likely that your students would still be familiar 
with test taking. This is not to say that you cannot help them be better 
prepared by giving individual tests. Nothing I have said in this chapter 
implies that you should not do this. I have simply provided you with 
an instrument that can be populated with test data (individual or 
group) as well as observational and conversational data. How you 
populate it is up to you. My only caution is that you make your choices 
based on what you think is best for your students and not based on 
the looming tyranny of an external standardized test.

At the end of the previous chapter, you mentioned that students 
start talking about what outcomes and to which levels they still 

need to provide evidence of competency. How do students provide 
this evidence?

You have a choice—either you go get the evidence by asking a 
student to demonstrate something to you, or you tell the students 

that it is their job to bring you the evidence of what they can do. The 
first option is easy to do and really just involves you giving each 
student a customized test prior to reporting out. The second one is 
even easier and best achieved through the use of portfolios. You may 
have tried portfolios in the past and have found them clumsy, but that 
is because they make no sense in a point-gathering paradigm. 
Portfolios come out of the data-gathering paradigm, and they are just 
a place where students place evidence of what they understand and 
are able to do. Digital portfolio tools such as FreshGrade or SeeSaw 
are built specifically to help you and your students gather evidence 
and link it to specific outcomes.
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My students are motivated by grades. You are implying that 
outcomes-based assessment will shift that motivation toward 

learning. What does it matter? Don’t both result in the same thing?

No. Outcomes-based assessment produces very different 
behaviors in students. Darien Allan (2017) found that students 

who were motivated by grades acted on that motivation only when 
points were on the line—their actions were discrete. On the other 
hand, students who were motivated to learn acted on that motivation 
at all times—their actions were continuous. That is, students who 
were motivated to learn used every opportunity to learn. And thinking 
classrooms are all about giving students opportunities to learn. If a 
student only cares about grades, they are not going to seize on these 
opportunities in the way that students who care about learning are.

In several places in this chapter you talk about getting more data. 
I understand that when the data are inconclusive, we need more 

data, but my school has a policy against retests. How do I then get 
more data?

There are several answers to this question. First, there is no such 
thing as a retest in a data-gathering paradigm. The data that 

come from such an event does not re-place data, as is implied by a re-
test. Having students write an additional test adds to the data—it 
doesn’t replace it. So, you can say that you are not doing a retest, just 
an additional test. Second, additional data can come from an 
observation, a conversation, or asking an individual student to do a 
specific question for you. At some point, however, you must issue the 
report card. It is then, and only then, your efforts to resolve 
inconclusive data need to stop, and a decision needs to be made.

I like everything I have read, but I am struggling with a residual 
feeling that outcomes-based assessment is not fair. If every 

student’s grade is based on fundamentally 
different data, how can we say that every 
student was graded the same?

We can’t. That’s the whole point. We want 
to grade based on what the evidence says 

each student is capable of and, because all 
students are different, they will demonstrate 
their capabilities at different times and through 
different data. We accepted the idea of 
differentiated instruction a long time ago 

We accepted the idea of 
differentiated instruction 
a long time ago because 

we recognized that all 
students are different. If 
this is true, then we must 

also accept the idea of 
differentiated assessment.
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because we recognized that all students are different. If this is true, 
then we must also accept the idea of differentiated assessment.

Your residual feelings of fairness come from a place in our collective 
history where assessment was a way to rank students. Some cultures 
still do this. And in those cultures, equality of opportunities has to 
be maintained in order to accurately produce the ranking. In most 
places in the world, however, assessment has moved from comparing 
students to each other to comparing students to standards (or 
outcomes). When that shift happened, we forgot to let go of our 
subconscious need to make everything the same for all students.

You mentioned that measurement errors occur through 
inconsistency in grading. But the example from Romagnano 

(2001) was based on inconsistencies between different graders, which 
could explain measurement error on big external tests. On my class 
tests, I am the only grader. Are there still measurement errors?

Yes. Measurement errors also occur through our own 
inconsistencies. We know, for example, that test papers graded 

early on are often graded differently than ones that are graded near 
the end. For some teachers the grades improve over time; for others 
they get worse. We also know that if we take a break in the middle of 
our grading, the papers that are graded prior to the break are graded 
differently than the ones that are graded after the break. If that break 
is extended and involves sleep, a meal, and some positive or negative 
social events, this may exaggerate the difference. And this doesn’t 
even take into account the variance introduced by the students and 
the complexity of their lives. We know, for example, that some 
students perform better in the morning than in the afternoon, or on 
Mondays better than Fridays, et cetera.

Taken together, it is safe to say that there can be a measurement error 
on any given student’s test paper at any time. Let’s conservatively say 
that this error is only 1%. What this means is that the grade they 
received on the test is an accurate reflection of what that student knows 
to within ±1%. This is a pretty good margin of error—much less than 
reality. But this is on a single test. The thing about measurement errors 
is that, over multiple measurements, it compounds. So, if over the 
year, this student will take 10 tests for you, at the end of the year her 
grade will be accurate to within ±10%. Depending on your particular 
reporting scheme, this can make the difference of several letter grades. 
And this is assuming an unbelievably low measurement error.
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Summary

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. In the FAQ I distinguished between grade inflation and 
grade deflation. Which do you think is the bigger problem?

3. Does outcome-based grading really produce grade inflation?

4. In this chapter I gave an example of a two-headed monster 
that exists in some jurisdictions. My experience is that, when 
it comes to grading, all jurisdictions have a two-headed 
monster of some kind. What are the two-headed monsters 
you have to live with?
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5. Can you think of some students for whom giving only the 
first page of a test could be beneficial? In what ways would it 
benefit them?

6. Can you think of some students for whom not writing the 
test could be beneficial? In what ways would it benefit them?

7. Can you think of some ways in which you could introduce 
collaborative testing into your assessment routines?

8. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?

Try This
Start using the navigation instrument (Chapter 13) you created for 
your students for the next unit of study as a data-gathering instrument 
for yourself. Gather data throughout the unit using the six indicators 
(✓ ,S, H, G, ✗, and N) and two subscripts (O and c), and make decisions 
about grades based on what the data are telling you.



CHAPTER 15
PULLING THE 14 PRACTICES  

TOGETHER TO BUILD  

A THINKING CLASSROOM

When I began this journey, my initial thoughts were that getting 
students to think is all about the tasks. If I just had the right tasks, all 
else would follow. Despite my experiences with Jane, all those years 
ago, I still believed that if we want to get students to think, then all we 
need to do is give them something to think about. I was both right and 
wrong in this thinking. Yes, if we want students to think then we need 
to give them something that will engage and propel them to think. But, 
this is far from enough. If nothing else in our practice changes, then 
thinking tasks will just frustrate the students and aggravate the teacher. 
We have to also create a culture where thinking is not only valued but 
also necessitated—we have to build a thinking classroom.

If you have been following along with the book, implementing new 
practices as you learn them, then you have already built a thinking 
classroom. If, however, you decided to wait until you had finished 
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reading about each of the 14 practices, then the 
question becomes, where to start? You cannot start 
with all of them at the same time. This would be an 
impossible feat even for the most talented teacher. 
Even if you could, your students would not be able 
to adapt to all the changes coming at them at once, 
and so this transformation would not appear as, or 
feel like, a success. But, you have to start somewhere. 
And, in this regard, where you start and what you do 
next turns out to matter. That is what this chapter is 
about—where to start and what to do next. By the 
end of the chapter you will have learned the ideal 
sequence for implementing the 14 practices to build 
your thinking classroom, as well as have a clear 
picture of what it can look like when it is all done.

The Research
Where to start? This became my next research question. And with 
this question in hand, I needed a way to try and test what would work. 
So, I offered a variety of professional development sessions to several 
hundred teachers in groups of 20 to 40 at a time. I gave each group 
a different subset and sequence of thinking classroom practices to 
implement in their classrooms, and I gathered data on what sequences 
worked and what sequences did not. And as I did with the thinking 
classroom practices, I adapted what I gave subsequent groups of 
teachers to try.

This is not to say that I tried every possible sequence, or that the 
sequences were random. From the outset, I knew enough about each 
practice and how they interacted with each other to know that some 
had to come before others. For example, I knew that flow (Chapter 9) 
was only possible if students were working vertically (Chapter 3) and 
was only manageable if students were working in groups (Chapter 2). 
Such connections between practices helped me avoid some ineffective 
sequences, but I needed to test others.

Once you are familiar 
with the 14 practices, 

then the question 
becomes, where to 

start? You cannot start 
with all of them at the 

same time.

Where you start and 
what you do next 

turns out to matter.
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Building a Thinking Classroom
What emerged from this experimentation was what 
I came to call the Building Thinking Classrooms 
Framework (see Figure 15.1)—a pseudosequential 
order to follow when implementing the 14 
thinking classroom practices.

Figure 15.1 The Building Thinking Classrooms Framework.

• Give thinking tasks
• Frequently form visibly 
 random groups
• Use vertical non-
 permanent surfaces

• Defront the classroom
• Answer only keep
 thinking questions
• Give thinking task early,
 standing, and verbally
• Give check-your-
 understanding questions
• Mobilize
 knowledge

• Evaluate what you value
• Help students see
 where they are and
 where they are going
• Grade based on data
 (not points)

• Asynchronously use hints
 and extensions to maintain
 flow
• Consolidate from the bottom
• Have students write
 meaningful notes

What emerged from 
this experimentation 

was what I came to call 
the Building Thinking 

Classrooms Framework.
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The data showed that the 14 practices cluster into four distinct 
groupings, or what I call toolkits—and the order in which these toolkits 
are implemented turns out to matter. That is, the practices in the 
first toolkit—use thinking tasks (Chapter 1), frequently form visibly 
random groups (Chapter 2), and use vertical non-permanent surfaces 
(Chapter 3)—should have all been implemented within your classroom 
and working well before you move on to the second toolkit, and so on. 
In this way, the framework is sequential. The data also showed that 
within each toolkit, order also plays a role. However, not in the same 
way that it does between the toolkits. In particular,

1. For the first toolkit, all three practices need to be 
implemented simultaneously, rather than sequentially.

2. For the second toolkit there is no optimal order. That is, as 
long as these practices are implemented after the practices 
in the first toolkit have been established in your classroom 
and before the practices in the third toolkit, it doesn’t 
matter what order you implement the practices in. The data 
showed that you can implement these practices one at a 
time or concurrently. If you are implementing concurrently, 
pay attention to your own capacities to do so as well as the 
capacities of your students. Regardless, within this toolkit 
it is important to establish whatever practice(s) you are 
implementing before adopting additional practices. The 
book is written with the practices in the order shown in 
Figure 15.1.

3. The third toolkit is best implemented in the order that it is 
presented in the framework—one at a time and not moving 
on to the next until the previous one is established.

4. For the fourth toolkit, where evaluate what you value 
(Chapter 12) is in the sequence does not matter. What 
matters is that grading based on data (Chapter 14) occurs 
after helping students see where they are and where they 
are going (Chapter 13). Again, make sure each practice is 
established before moving on to the next.

Because of these idiosyncratic sequences (within the toolkits), the 
framework in Figure 15.1 is pseudosequential—in some very specific 
ways order matters, and in other ways it does not.

Since this framework has emerged out of the research, I have been 
fascinated by its structure. Some parts of it make sense—like the 
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fact that fostering autonomy should come before flow. Other things 
were more mysterious and have required further investigation to 
understand. In what follows, you’ll read about each toolkit in turn 
and see why it is made up of the practices, and sometimes the order 
of the practices, that are contained within it.

Toolkit #1

To understand the practices that are embedded 
within the first toolkit, it helps to think about 
your classroom as a system, and like all systems, it 
operates with a rhythm of routines, expectations, 
and patterns that—over time—stabilize and 
become your classroom norms. And once these 
norms are established, they are very difficult to 
change. But you know this already. This is why 
you likely prefer to make changes at the beginning 
of the school year when the norms are yet to be 
established, are still in flux, and are pliable.

To change the norms, then, means that you need 
to also change the pattern of student behaviors and habits. From 
system theory we know that when we try to change a stable system, 
the system will defend itself. “In a system, all the features reinforce 
each other. If one feature is changed, the system will rush to repair the 
damage” (Stigler & Hiebert, 1999). When that system is a classroom, 
these defenses look like resisting, complaining, and apathy.

Even worse, sometimes the changes you make are not even noticed. 
For example, if—part way through the year—you have ever tried to 
introduce journaling in the mathematics classroom, you know that it 
is not well received. Even if the students don’t complain about it, the 
affordances of journaling do not initially live up to the hype. This is 
not to say that journaling is not good or that it is not worth doing. 
Journaling has been shown time and time again to be a powerful 
reflective tool for students as well as a way to create effective channels 
of communication between students and the teacher. But it usually 
doesn’t do any of this to begin with. This is because, within a stable 
system, your students are unlikely to even notice that a change in their 
behavior is required. To them, journaling just looks like a different 
type of homework—which is not a radical enough departure from the 
norms to warrant a change on their part.

The three practices in the first toolkit, however, are not like journaling. 
Putting students in random groups to solve engaging thinking tasks 

• Give thinking tasks
• Frequently form visibly 
 random groups
• Use vertical non-
 permanent surfaces
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on vertical non-permanent surfaces is enough of a departure from 
classroom norms that the students will notice that a change has 
happened. At the same time, the changes to the classroom routines 
are radical enough that they overwhelm the system’s ability to defend 
itself and, as a result, the students allow themselves to change, to be 
different, to deviate from their normative mimicking behaviors, and 
to begin to really think. And so the system changes.

In the introduction, I told the story of how removing 
all the furniture had a positive impact on students’ 
thinking. Removing furniture, it turned out, was 
enough of a shock to the system to change student 
behavior. The three practices in the first toolkit—
thinking tasks, frequently formed visibly random 
groups, and the use of vertical non-permanent 
surfaces—when implemented together act in 
the same way. They shock the system, shock the 

students, and necessitate a different behavior—even if you implement 
it midyear.

As such, the practices in the first toolkit, despite requiring massive 
changes in teacher practice, are not at all about the teacher. You will 
either implement these thinking practices or not—that is up to you. 
These three practices are all about creating a new set of norms in the 

room that necessitate that the system change, and 
with it, your students.

Toolkit #2

Where the first toolkit is all about student behavior, 
the second toolkit is all about teaching practice. This 
toolkit will require you to make some fundamental 
changes to the ways in which you do things that 
are part of the very fabric of teaching. You will have 
to think about when, where, and how you give the 
thinking tasks, which may look very different from 
how you’ve given out tasks in the past. At the same 
time, you need to make conscious and deliberate 
changes to what kinds of questions you answer and 
the way in which you answer them.

You will need to begin the process of fostering 
the autonomy that will allow students to manage 
themselves and use the groups around them as a 
source of hints when they are stuck and extensions 

The three practices in 
the first toolkit, when 

implemented together, 
shock the system, 

shocks the students, 
and necessitate a 
different behavior.

• Defront the classroom
• Answer only keep
 thinking questions
• Give thinking task early,
 standing, and verbally
• Give check-your-
 understanding questions
• Mobilize
 knowledge

Where the first toolkit 
is all about student 

behavior, the second 
toolkit is all about 
teaching practice.
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when they are done. This, alone, will require you to mobilize 
knowledge and be deliberately less helpful—something that, for many, 
goes against the very foundation of what it means to be a teacher.

Also, in this toolkit is where you find the first practice that moves 
thinking from collective doing and knowing on vertical surfaces to 
individual knowing and doing through offering students a chance to 
complete check-your-understanding questions. Although these are 
seemingly like what we are used to calling homework questions, do 
not underestimate the changes you have to make in your own thinking 
about them. First, you have to give up all control over them. These are 
an opportunity for students and, for this reason, doing them is their 
responsibility—not yours.

Finally, you need to defront your classroom. Although seemingly trivial 
at the outset, the rearrangement of furniture will require you to use the 
room differently in your teaching. This rearrangement is a less efficient 
use of space and, therefore, you may need to get rid of unnecessary 
clutter, including excess furniture. It may also require you to move your 
desk away from the spot in the room that students 
most associate with the front. And it will require you 
to reconsider how you move around and where you 
stand within the classroom.

In our research, we found that if any of these practices 
were introduced as a first step to build a thinking 
classroom, they were wholly ineffective at changing 
student behavior. Although powerful contributors 
to student thinking, when introduced on their 
own they did not have enough impact to signal to 
the system that that change in student behavior 
was needed. Positioned here, in the second toolkit, 
however, these practices serve a very powerful 
purpose in fine tuning the thinking classroom and 
laying the foundation for the third toolkit.

Toolkit #3

Once the practices in the second toolkit have 
been implemented, you are ready to start creating 
flow in your classroom, and here is where you’ll 
begin to truly reap the benefits of a thinking 
classroom. Once students are in flow, they are 
ready and willing to think about anything—

Positioned here, in the 
second toolkit, these 
practices serve a very 
powerful purpose in 

fine tuning the thinking 
classroom and laying 
the foundation for the 

third toolkit.

• Asynchronously use hints
 and extensions to maintain
 flow
• Consolidate from the bottom
• Have students write
 meaningful notes
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including curriculum content. It is here that you 
will earn back the time you spent establishing a 
thinking culture in your classroom, as you start 
moving your students through large amounts of 
content very quickly. This will require more of 
you than anything else in the Building Thinking 
Classrooms Framework. Not only will you need 
to create sequences of curriculum tasks that 
allow you to walk students up the flow staircase, 
you will need to manage flow through the 
asynchronous use of hints and extensions. Your 
ability to give these tasks verbally will help with 

this, as will the groups’ willingness and ability to manage themselves 
autonomously.

As you use this toolkit, you will also start to think deeply about how 
you consolidate a lesson. As mentioned in Chapter 10, planning 
for this begins shortly after you begin the flow activities, with the 
identification of student solutions that you would like to share out 
at the end. It also involves you seeding ideas for things that you 
would like to see emerge somewhere in the room. So, for example, 
if you would like to have a graph to share out during consolidation 
and no group has produced a graph, you will need to encourage 
one or more groups to go in this direction. All this planning and 
anticipation needs to happen while you are managing flow. For this 
reason, it is important that you have become comfortable with the 
asynchronous use of hints and extensions to create and maintain 
flow before starting to think about simultaneously planning for 
consolidation.

The final practice in this toolkit is meaningful notes, which serve 
two purposes in the thinking classroom. The first purpose is to 
create a record of the learning that has happened. The more 
important purpose, however, is to help students reify and transfer 
their groups’ thinking into individual understanding. In this 
regard, meaningful notes mark, in essence, the transition of the 
collective consolidation that you manage into an individual record 
of that consolidation that the student manages. So, whether a 
record is important for you and your students or not, the reification 
ought to be. The data showed that although meaningful notes 
can be introduced earlier in the framework, the quality of the 
meaningful notes is radically improved after you have implemented 
consolidation from the bottom.

Once the practices in 
the second toolkit have 

been implemented, 
you are ready to start 
creating flow in your 

classroom, and here is 
where you’ll begin to 

truly reap the benefits 
of a thinking classroom.
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Toolkit #4

The final toolkit in the framework is where all the 
assessment occurs. This is not to say that assessment 
is less important than the other practices. Quite 
the contrary, the assessment practices are where 
we see some of the biggest changes in student 
behavior and student performance. I believe the 
reason these practices all ended up in the fourth 
toolkit is that assessment should be a reflection 
of a teacher’s practice, and until this point, your 
teaching practice has been in flux. Once you 
have built the thinking classroom through the 
implementation of the first three toolkits, you are 
ready to start assessing in the thinking classroom.

One of the ways to do this is to start evaluating 
what you value. Through the use of coconstructed 
three-column rubrics, this assessment practice not 
only shows the students that you are valuing the 
day-to-day activities of a thinking classroom—like 
perseverance, risk taking, and collaboration—but 
also serves to fine tune student behaviors around 
these competencies.

Along with the use of assessment to shift student 
behavior vis-à-vis competencies, assessment also 
affords you the opportunity to shift student behavior 
vis-à-vis content. Through the use of the navigation 
instruments introduced in Chapter 13, you are able 
to decrypt the mysteries around content and clearly 
communicate to students not only the demarcations 
between outcomes, but also to what level they have 
demonstrated attainment of outcomes. The clarity 
of this information allows students to focus and take 
greater responsibility for their learning.

Once students are comfortable using these 
navigation instruments for data-driven self-
assessment, you are ready to seamlessly use similar 
structures to collect and analyze data to track 
student performance. Making the paradigm shift to 
outcomes-based assessment will allow you to gather 
and record data not only from test sources, but 

The reason these 
practices all ended up 
in the fourth toolkit is 

that assessment should 
be a reflection of a 

teacher’s practice, and 
until this point, your 

teaching practice has 
been in flux.

Through the 
triangulation of data, 

you will be able to 
construct a more 

accurate picture of 
where each student is 
in their learning (and 

assign a more accurate 
grade) while at the 
same time helping 

students to shift their 
focus from grades as a 
product to evidence of 
learning as a process.

• Evaluate what you value
• Help students see
 where they are and
 where they are going
• Grade based on data
 (not points)
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also from observational and conversational sources—both individual 
and collaborative. Through the triangulation of data, you will be able 
to construct a more accurate picture of where each student is in their 
learning (and assign a more accurate grade) while at the same time 
helping students to shift their focus from grades as a product to evidence 
of learning as a process.

Transferring Collec tive Synergy  
Into Individual Knowing 
and Doing
Early on in the research we came to a troubling realization. This was 
back when we were mostly exploring students working on thinking 
tasks in random groups on vertical surfaces and fine tuning that work 
with how we were giving the tasks, answering questions, and using hints 
and extensions to maintain flow. The research was far from finished 
at this point, but things were still going well. Our use of flow was still 
allowing us to move through huge amounts of content in very short 
periods of time. The problem, we realized, was that we were not seeing 
any improvements in students’ individual performances on tests.

We knew there was likely a disconnect somewhere, and we had 
to figure out where it was happening. When we looked closely at 
groups working on the whiteboards, what we saw were students 
working collaboratively and clearly demonstrating understanding 
of the concept at hand—both collectively and individually. That is, 
we saw and heard individual members of groups clearly articulating 
and explaining their thinking in the moment. For example, when we 
looked closely at Grade 10 students factoring quadratics according 
to the flow sequence in Chapter 9, what we saw was that, in that 
moment, every member of a group was able to factor 8x2 − 8x − 6 
and clearly explain what they were doing. Yet, when we tested these 
same students four days later, about 70% of the students were not able 
to factor a similar quadratic. Somehow, the knowing and doing that 
we were seeing in the collaborative groups was dissipating and not 
transferring into individual knowing and doing.

The learning we were seeing in the groups was real. But it was 
synergistic, temporal, and contextual—existing only in that moment, in 
that context, and within that collective. The individual understanding 
that was being demonstrated in those moments was not individual 
at all—it was only the individual expressions of the knowing and 
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doing that was being held collectively within the 
synergy of the group in that moment. What we 
needed to figure out was how to transform and 
transfer that synergistic collective knowing and 
doing into the individual knowing and doing. 
At the time we had no idea how to do this. But 
amazingly, over time, and with the emergence of 
additional optimal thinking practices, this issue 
began to resolve itself. And with the emergence 
of the rest of the Building Thinking Classrooms 
Framework and its pseudosequential implementation schedule, the 
final pieces fell into place.

It turns out that there are four thinking practices that work together 
to achieve this transfer from collective to individual understanding. 
And, at the time that we were beginning to see the transference issue, 
none of these were being experimented with yet. These are

• consolidation from the bottom (Chapter 10),

• meaningful notes (Chapter 11),

• check-your-understanding questions (Chapter 7), and

• helping students see where they are and where they are 
going (Chapter 13).

On their own and in concert, each of these contributes to transforming 
synergistic collective understanding into individual understanding 
(see Figure 15.2).

Consolidation from the bottom helps to name and formalize the 
synergistic experiences of the collaborative work. But this is still a 
form of collective consolidation. Meaningful notes provide students 
with the first individual opportunity to consolidate the collective 
learning—from the group and the teacher’s consolidation—and 
extract from it their personal learning. Check-your-understanding 
questions offer them an immediate opportunity to confirm this 
learning. Finally, helping students to see where they are and where 
they are going offers ongoing and delayed formative feedback that 
positions this learning within the scope of the unit of study.

What we needed to 
figure out was how 

to transform and 
transfer that synergistic 
collective knowing and 
doing into the individual 

knowing and doing.
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Figure 15.2 Transforming collective synergy into 
individual understanding.

Although each of these practices helps, in some way, to move 
collective learning toward individual learning, they are most effective 
when all four work together. As with many things in the Building 
Thinking Classrooms Framework, in this regard the order matters—
but not in the same way order has mattered up until now. In  this 
case the order that matters is the order in which the first three of 
these practices—consolidation from the bottom, meaningful 
notes, check-your-understanding questions—occur within a  
lesson (see Figure 15.3).

• You begin the lesson by giving a task verbally with the 
students standing around you somewhere in the room, 
randomly grouping the students, and  
sending them off to their VNPSs.
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•  You then manage the flow in the room by 
using hints and extensions, while at the 
same time planning for consolidation.

•  You keep the students in flow until 
the energy wains, at which point you 
consolidate from the bottom.

• This is followed by meaningful notes.

•  Finally, you provide the opportunity to do 
check-your-understanding questions.

Although each of these 
practices helps, in some 
way, to move collective 

learning toward 
individual learning, they 
are most effective when 
all four work together.

Figure 15.3 Typical lesson sequence.

This sequence and pacing works well if the lessons are at least 
65 minutes long. If they are shorter than this, you may struggle to 
fit everything into one lesson. If this is the case, you may wish to 
spread these activities out over two lessons (see Figure 15.4). In this 
situation, Day 1 would be dedicated to having the students work 
in flow and may or may not end with consolidation. Day 2 would 
then begin with a brief statement of the task and reemergence within 
flow—except for a shorter period of time and moving through the 
sequence of tasks in bigger jumps. This is followed by consolidation—
even if this was done on Day 1, meaningful notes, and check-your-
understanding questions. This sequence is flexible and can take on 
different configurations. The only restrictions, we found, were that 
immersion in a thinking activity must precede consolidation, and 
consolidation must happen before meaningful notes. For example, 
Day 1 can include consolidation and meaningful notes, leaving Day 2 
to be dedicated to check-your-understanding questions. In fact, many 
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teachers I have worked with will occasionally dedicate an entire lesson 
to students doing check-your-understanding questions coupled with 
documenting where they are and where they are going.

Figure 15.4 Typical lesson sequence spread over two days.

There is one additional thing to note about these 
four practices. They are not just about transferring 
collective synergy to individual understanding. 
They are also about transferring responsibility of 
teaching into responsibility for learning That is, 
for the transfer to individual understanding to 
occur, students need to take on more and more 
responsibility for their own learning. Aside from 
consolidating from the bottom, the remaining three 
practices (check-your-understanding questions, 

meaningful notes, and understanding where they are and where they 
are going) require student responsibility in abundance. This is why 
I call these three practices the student-responsibility practices—and 
there is a hierarchy among them.

Check-your-understanding questions require the least amount of 
responsibility. Students are familiar with homework. Check-your-
understanding questions are just about shifting who they are done 
for (from teacher to students) and why they are done (from practice 
to checking for understanding). In essence, the only difference 
between homework and check-your-understanding questions is a 
shift of responsibility. This is why this practice appears first of the 
three responsibility practices, and it is the only one of the three to be 
included within the second toolkit.

Meaningful notes comes next—in the third toolkit. This requires more 
responsibility on the part of the students and is a bigger departure from 

For the transfer 
to individual 

understanding to 
occur, students need 
to take on more and 

more responsibility for 
their own learning.
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what they are familiar with. Students are used to being told exactly 
what to write down in their notes. In normative settings, note taking is 
more akin to scribing what is written on the boards. This requires little 
to no thinking and little to no ownership over what gets written down. 
Meaningful notes is a massive departure from this passive activity. Not 
only do students now have to extract their own meaning from their 
collaborative activity and the teacher’s consolidation, they have to choose 
how to sequence and represent this meaning, and they have to take 
ownership over its production in the moment and its use in the future.

Understanding where they are and where they are going comes last—
in the fourth toolkit. This practice requires the most responsibility in 
that it is a call for students to completely own their learning. Although 
the teacher creates the structures to do this, the students ultimately 
have to monitor and track their learning and take action when they 
see that they are not attaining an outcome at various complexity levels.

Each of these student-responsibility practices is offered as an 
opportunity to students in a thinking classroom. And, as opportunities, 
they are sensitive to teacher meddling. That is, if the teacher makes 
motions to require students to take on this responsibility through 
grading or punitive measures, then they transform from responsibility 
practices to accountability practices, and we are right back to students 
doing them for the wrong reason (grades) and for the wrong person 
(teacher). I believe it is because of this sensitivity and the hierarchical 
increase in responsibility within these three practices that they have 
been distributed within the Building Thinking Classrooms Framework 
the way they have—one each, in order of required responsibility, in 
the second, third, and fourth toolkits. And I also believe that this 
is why there are no student-responsibility practices within the first 
toolkit—which is about establishing a collaborative thinking culture 
more than about facilitating individual knowing and doing.

Rebuilding a Thinking Classroom
When you have all four toolkits and 14 practices up and running in 
concert with each other, and students have begun taking ownership 
more of their learning, you will realize the full benefits of a thinking 
classroom—greater student engagement, more active learning, 
greater student enjoyment, increased student responsibility, higher 
performances, easier and faster movement through content, greater 
satisfaction as a teacher, et cetera. And just when you are most 
enjoying these benefits, they change the students on you, and you 
have to start all over again. Or do you?
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This became my next research question—what is 
the sequence of implementation of the thinking 
classroom practices after Year 1? Although your 
new class of students may not be familiar with the 
thinking classroom, you are. After having built 
and run a thinking classroom, you are well versed 
in each of the 14 thinking classroom practices. 

This means that the implementation framework would be dependent 
only on student acclimatization. Does that change the sequence of the 
practices? It turns out that it does. The data showed that for teachers 
going into their second, third, or fourth year of implementation, 
the pseudosequence looked different and was composed of only 
two toolkits. I called this pseudosequence the Rebuilding Thinking 
Classrooms Framework (see Figure 15.5).

What is the sequence 
of implementation of 

the thinking classroom 
practices after Year 1?

Figure 15.5 The Rebuilding Thinking Classrooms Framework.

• Give thinking tasks
• Frequently form visibly
    random groups
• Use vertical non-permanent
    surfaces
• Defront the classroom
• Answer only keep thinking
    questions
•  Give thinking task early,
    standing, and verbally
• Mobilize knowledge
• Asynchronously use hints and
 extensions to maintain flow
• Consolidate from the bottom

• Give check-your-understanding
 questions
• Have students write meaningful
 notes
• Evaluate what you value
• Help students see where they are
 and where they are going
• Grade based on data
 (not points)
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Toolkit #1

There are several major differences between the 
first toolkit in this rebuilding framework and 
the first toolkit in the original framework for 
building a thinking classroom for the first time. 
The main difference is the number of practices. 
I believe that this is solely due to the fact that 
whereas the original framework is governed by 
the acclimatization periods for both students and 
the teacher, the rebuilding framework is governed 
only by the acclimatization rate of students. 
Because you, as the teacher, are already used to the 
thinking classroom practices, you are ready to go 
on Day 1. You have a collection of highly engaging 
non-curricular thinking tasks to start with, you 
know when, where, and how to give these tasks, 
and how to avoid answering stop-thinking and 
proximity questions. Your room is already defronted and set up with 
vertical non-permanent surfaces, you know how to randomize groups, 
and you are ready to start mobilizing knowledge by being deliberately 
less helpful. At the same time, you know how to sequence activities to 
create flow and how to consolidate the learning after a flow experience.

Like the practices in the first toolkit in the original 
framework, the practices in the first toolkit in the 
rebuilding framework are all implemented at once. This 
is not to say that this is all going to go well on Day 1. 
Students will be shocked at how different your class 
experience is from other learning experiences, and this 
may result in some resistance and will definitely require 
an acclimatization period. But, because this is being 
initiated on Day 1 of the school year, resistance will be 
minor, and acclimatization will be quick. Unlike the first time you did 
this, you are now in the enviable position of building classroom norms 
as opposed to trying to change classroom norms—a much easier task. 
Regardless, many of the students’ thinking classroom behaviors will 
take to time to develop, and until they do your efforts to build and 
maintain flow may feel clumsy—but still worth doing.

• Give thinking tasks
• Frequently form visibly
    random groups
• Use vertical non-permanent
    surfaces
• Defrontthe classroom
• Answer only keep thinking
    questions
• Give thinking task early,
 standing, and verbally
• Mobilize knowledge
• Asynchronously use hints and
 extensions to maintain flow
• Consolidate from the bottom

You are now in the 
enviable position of 
building classroom 
norms as opposed 
to trying to change 
classroom norms.
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Toolkit #2

After about three weeks, your class will be 
ready to move on to the second toolkit, which 
contains all of the assessment practices and all 
of the student-responsibility practices. Unlike 
what you did with the first toolkit, you will 
implement these one at a time as the students 
become ready for them. Although there is 
some degree of freedom around the order 
with which you do this, it still works best if 
you present the move to outcomes-based 
assessment to students after they have been 
exposed to assessment as a tool for helping 

them see where they are and where they are going. This is not to say that 
you should not be doing outcomes-based assessment from the beginning, 
but rather that your students will not understand how it works until they 
have had a chance to first experience it in the context of data-driven self-
assessment.

Likewise, I found that the three student-responsibility practices need 
to roll out in the same order as in the Building Thinking Classrooms 
Framework—and for the same reason. There are differences in the 
amount of student responsibility each practice requires, and it is 
important to increase the responsibility gradually, beginning with 
check-your-understanding questions, and so on.

Forest for the Trees
Whether you have implemented the 14 thinking practices 
as you read the book or you are ready to start implementing 
according to the Building Thinking Classrooms Framework 
(see Figure 15.1), it is important to try to see the forest 
for the trees. My goal from the outset was to get students 
to think (forest). Thinking is a necessary precursor to 

learning, and if students are not thinking they are not learning. The 
ensuing 15 years of research, involving hundreds of teachers and 
thousands of students, was singly—obsessively—focused on this goal. 
What emerged were 14 thinking practices (trees). This book lays out 
these 14 practices along with the many micropractices (more trees) 
that will help you in your quest to build a thinking classroom.

Keeping both perspectives in balance is necessary to your success, 
and thus, that of your students. It is so easy to become consumed 

• Give check-your-understanding
 questions
• Have students write meaningful
 notes
• Evaluate what you value
• Help students see where
 they are and where they
 are going
• Grade based on data
 (not points)

My goal from the 
outset was to get 
students to think.
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by the importance of each practice that we lose 
sight of the overall objective. If we want students 
to think we need to give them something to think 
about and someone to think with and somewhere 
to think. In our pursuit of that goal, it is also 
important to not rob students of the opportunity 
to think by answering all their questions or telling 
them how to do something. Along the way we are 
going to have to fine tune the way our room looks, 
what the acts of teaching look like, and what and 
how we assess. And students are going to have to 
take more responsibility for their learning. But 
these are all trees. The goal is still the forest—
getting our students to think.

And when you achieve this, all of these practices 
will lose their discreteness and meld into a whole—
and you will have a classroom that is not only 
conducive to thinking but also requires thinking, 
a space that is inhabited by thinking individuals as well as individuals 
thinking collectively, learning together, and constructing knowledge 
and understanding through activity and discussion (Liljedahl, 2016). 
You will have built a thinking classroom—you will have your forest.

A thinking classroom lesson seems to revolve around the idea of 
creating and maintaining flow through the way we use hints and 

extensions. Given how important this is, why not place it earlier in the 
Building Thinking Classrooms framework?

I agree that creating and maintaining flow is of utmost importance, 
and likely the most significant practice, in the thinking classroom. 

But I did not choose to place it in the third toolkit. The pseudosequence 
presented in Figure 15.1 emerged out of the research as the order most 
effective at building a thinking classroom. It has taken a long time for 
me to understand why this is the pseudosequence as opposed to others. 
What I present in this chapter are the results of much theorizing as to 
why some practices need to be implemented together and why some 
practices need to be established before others are adopted. In this 
regard, flow is where it is because a lot of the thinking practices in the 

It is so easy to become 
consumed by the 

importance of each 
practice that we lose 

sight of the overall 
objective.

And when you achieve 
this, all of these 

practices will lose their 
discreteness and meld 
into a whole—and you 

will have built a thinking 
classroom.
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first and second toolkits need to be working well within the classroom 
before flow will function as the research shows it can.

I was thinking of starting more gradually than what the sequence 
suggests—maybe with changing the way I answer questions or 

give tasks. Can I do that?

You can do what you wish. This book offers you a set of practices 
that have been proven to initiate and maintain thinking. The 

Building Thinking Classrooms (Figure 15.1) and Rebuilding Thinking 
Classrooms (Figure 15.9) frameworks offer proven pseudosequences 
to enact these practices. You have to decide for yourself what is right 
for you and your students. But I caution you against starting gradually. 
One of the things the research showed over and over again is that if 
the change you make is too subtle, then the students’ behaviors don’t 
change, and the changes in your teaching practice will have very little 
impact. As mentioned, this is why the first toolkit in the Building 
Thinking Classrooms Framework contains the practices it does and 
why they are to be enacted together—to signal to students that this is 
different, and that they need to behave differently.

I was thinking of starting off by doing thinking classrooms once 
a week. Will that work?

Doing it once a week will serve to give your students a break from 
the normal routines of school, but our research shows that you 

are unlikely to get beyond the first toolkit. It will also result in the 
students seeing math class and thinking classrooms as two distinct 
events rather than seeing math class as being about thinking in math.

Are there any other configurations for breaking the lesson 
sequence across two days other than what is presented in 

Figure 15.8?

Yes there are. I gave one other configuration already—that of 
having Day 2 dedicated to check-your-understanding questions. 

Another configuration I have seen is to have students do meaningful 
notes after they have had an opportunity to do check-your-
understanding questions. The research showed that meaningful notes 
need to come after consolidation—but they do not have to come 
immediately after. Some teachers I have worked with ask students to do 
their meaningful notes at home and preserve more class time for doing 
check-your-understanding questions. This increases the responsibility 
required of students around meaningful notes, but it works.
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I found it odd that check-your-understanding questions emerge 
in the Building Thinking Classrooms Framework (Figure 15.1) 

before consolidation and meaningful notes, yet occur after these 
practices in the lesson structure (Figures 15. 7 and 15.8). Why is that?

The pseudosequence of the Building Thinking Classrooms 
Framework is what it is for a number of reasons—from what the 

teacher is capable of and ready to implement to what the students are 
capable of and ready to take on. Check-your-understanding questions 
emerged in the second toolkit because of where they sit within the 
hierarchy of the student-responsibility practices. They sit where they 
do within the lesson sequence because of the empirically emergent 
results that meaningful notes must be preceded by consolidation.

Questions to Think About
1. What are some of the things in this chapter that immediately 

feel correct?

2. What are some different ways to split a thinking classroom 
lesson across two lessons?

3. Where are you in your journey through the thinking 
classroom framework, and what are you going to 
introduce next?

4. In this chapter I spoke about the classroom as a system and 
how systems defend themselves against change. Can you 
think of a time where you tried to introduce something that 
the system defended itself against?

5. If the best time to introduce something new to a system is in 
the first week of school, what do you want the start of your 
next school year to look like?

6. What are some of the challenges you anticipate you will 
experience in implementing the strategies suggested in this 
chapter? What are some of the ways to overcome these?
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Ability grouping, 53, 65–66
Activity settings, 7–8

homework, 119–131
note taking, 187–207
now-you-try-one task, 8–10

Allan, D., 275
Anecdotal reporting, 261
Anonymity, 61–62, 181
Answering questions, 83

clarification questions, 88
downstream effect of, 88
FAQ, 91–95
issue, 83
keep-thinking questions, 87, 92
macro-moves, 95
micro-moves, 95
parents’ response to not  

answering, 94
in primary grades, 90–91
problem, 83–87
proximity questions, 84–87, 92
to pseudostatements, 88–89
question reduction strategies, 94–95
with a question strategy, 90
responses, 89–90
smiling and walking away strategy, 

90–91, 93–94
stop-thinking questions, 87
thinking classroom implementation, 

88–91
Try This activity, 96–97
not answering questions, 90–94, 139
walking away strategy, 90–91, 93–94. 

See also Answering questions: 
smiling and walking away 
strategy

Assessment. See Formative assessment; 
Grading

Assessment capable visible learners, 234
Assignments, 126
Asynchronous activity, 145
Autonomy, student. See Student 

autonomy, fostering

Boaler, J., 31
Boredom, 147, 149, 157
Bottom, consolidation from, 172–176, 

182, 202, 285–286. See also 
Consolidation: leveling to bottom 
approach

Building Thinking Classrooms 
Framework, 281–283, 281 (figure)

FAQ, 297–299
first toolkit (toolkit #1), 282–284
fourth toolkit (toolkit #4), 282, 

287–288
rebuilding, 293–296
second toolkit (toolkit #2), 282, 

284–285
student-responsibility practices, 293
third toolkit (toolkit #3), 282, 

285–286
toolkits, 282

Card tricks, 21–22
Cell phones, 104, 176
Challenge and skill balance, 147, 148 

(figure)
as dynamic process, 148, 149 (figure)
of elementary students, 154–155
extensions for, 148–156
of high school students, 151–152
hints for, 156–158
of middle school students, 152–154
mode of engagement, 158–160
thick slicing sequence, 155
thin slicing sequence, 155–156,  

155 (figure)
timing, 149–150
using shifts, 158–160

Cheating behavior, 121–122, 138
Check-your-understanding questions, 

125–128, 285
for collaborative groups, 128
in collective synergy to individual 

understanding transformation, 
289–293

INDEX
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marking, 127
navigation instrument for, 236, 

239, 248. See also Formative 
assessment

for primary grades, 129
Clarification questions, 88
Classroom

cell phone usage in, 104
defronted, 75–77, 75 (figure),  

77 (figure)
furniture arrangement in. See 

Furniture arrangement
journaling in, 283
norms, 11–12
orderly, 75 (figure)
projector placement in, 77–78
student workspace in. See Workspace, 

student
super organized, 72
as system, 283–284 
See also Thinking classroom

Coconstruction of rubric, 219,  
223–224, 287

Collaboration rubric, 213 (figure),  
216 (figure)

four-column, 214–218
Collaborative groups, 39, 45 (figure)

ability groupings, 53, 65–66
active and passive interaction among, 

135–137, 137 (figure)
check-your-understanding questions 

for, 128
diversity, 40, 45
for educational goals, 39–40
in elementary classroom, 39
erasing freedom in, 66
evaluation, 223
FAQ, 49–54
flow in, 162–163
formation by playing cards activity, 

44, 50–51
frequent visibly random groupings, 

44, 46–49
in high school, 40
idea, borrowing, 48–49
integration, 40
issue, 39–40
knowledge mobility and, 47–49
macro-moves, 54
marker movement in, 64–65
mathematics learning enthusiasm, 48
micro-moves, 54
optimal group size, 44–45
for peacefulness, 40

pedagogy, 39
problem, 40–42
for productivity, 39
quizzes/tests, 254, 271, 274
random grouping, 43, 50–52
redundancy, 44–45
role assignment in, 42
self-correction in, 141
self-selection, 40–42, 45
size, 44–45
social barriers, elimination of, 46–47
for social goals, 40
socialization, 40
social stress reduction, 48–49
strategic grouping, 39, 41–43
teacher goals vs. student goals, 40
thinking classroom implementation, 

43–49
Try This activity, 55, 68–69
turn taking, 45
visibly random grouping, 44, 46–49
willingness, 46, 50
with VNPSs, 64
with wall-mounted whiteboards, 

58–59, 59 (figure)
Collective consolidation, 289
Collective synergy to individual 

understanding, 288–293,  
290 (figure)

Competencies
evaluation of, 211–222
meaningful worked examples, 

199–200
observable, 220, 224
students’ success in thinking 

classroom, 209–210
Consolidation, 171

cell phone usage during, 176
with change model, 173
collective, 290
in collective synergy to individual 

understanding transformation, 
289–293

discussing and demonstrating, 180
discussion with notation, 175, 182
discussion without notation, 174, 182
erasing option in, 179–181
FAQ, 179–182
gallery walk, 177–178, 180–182
guided gallery walk, 179, 181–182
issue, 171
leveling to bottom approach, 

172–176, 182, 202, 285–286
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leveling to top approach, 171–172, 
176, 182

macro-moves, 183
methods, 174–176
micro-moves, 183
notes and, 202
after now-you-try-one task, 171
problem, 171–172
reifying activity, 173
selecting and sequencing, 178–179
with solution model, 173
from telling to thinking, 178
thinking and engagement during, 

176–179
thinking classroom implementation, 

172–179, 285–286
time spent vs. challenge, 176 (figure)
Try This activity, 184–185
using pictures, 180

Content knowledge, 20
Conversations, observations, and 

products (COP) framework, 
272–275, 272 (figure)

Creating, mode of engagement, 159
Csíkszentmihályi, M., 146

optimal experience, 146–160
Curriculum thinking tasks, 26,  

28–31, 33
scripted, 27–30
time aspect of, 32–33

Data-gathering paradigm, 258, 268, 
272, 274

Data, triangulation of, 272–273, 288
Dead notes, 188–191
Deflation, grading, 268
Defronting, 75–77, 75 (figure), 285

with random grouping and VNPSs, 
75–76

science lab for math class, 78
in shared classroom, 78

Desk arrangement. See Furniture 
arrangement

Differentiated assessment, 275–276
Differentiated instruction, 275
Differentiation, 145–146, 165–166
Digital portfolio, 274
Direct instruction lesson, 28–29
Disengagement, 41, 61–62
Doing, mode of engagement, 158
Don’t do behavior in homework, 120

Educational goals, 39–40
Elementary classroom

challenge and skill balance, 154–155
grouping in, 39
homework, 123
practice in, 124
student questions, 89 (figure)
students in thinking tasks, 26 (figure)

Encrypted feedback, 243
Engagement and thinking, 146 See also 

Optimal experience
Evaluation, 209

collaboration rubric, 213 (figure),  
216 (figure)

collaborative groups, 223
defined, 225, 231
FAQ, 222–225
issue, 209–210
macro-moves, 226
micro-moves, 226
problem, 210–211
student competencies, 209–210
summative, 231
thinking classroom implementation, 

211–222, 287
Try This activity, 227–229
using rubric approach, 211–222.
See also Rubric

Event-based grading, 254–257, 265, 
271–272

Evidence-based grading, 258
Exemplars, 224–225
Explaining, mode of engagement, 158
Extensions, 145

for challenge and skill balance, 
148–156

FAQ, 160–166
for flow, 148–156
issue, 145
macro-moves, 166
micro-moves, 166
problem, 145–146
thinking classroom implementation, 

146–160, 285–286
Try This activity, 168–169 See also 

Optimal experience

Faking behavior, 9, 58
FAQ. See Frequently asked questions 

(FAQ)
Feedback, 150, 160, 162, 232, 234, 243

encrypted, 243
opinion-based self-assessment, 247

Feedforward, 247
Fenstermacher, G., 7
Fill-in-the-blank notes, 187, 191, 201
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Fixed mindsets, 217
Flow, optimal experience, 285–286

in collaborative groups, 162–163
on curricular tasks, 160 (figure)
defined, 147
and differentiation, 165–166
as dynamic process, 148, 149 (figure)
of elementary students, 154–155
of high school students, 151–152
immediate feedback on action, 150, 

160, 162
of middle school students, 152–154
mode of engagement, 158–160
patience, 163, 164 (figure)
perseverance, 163, 164 (figure)
thick slicing sequence, 155
thin slicing sequence, 155–156,  

155 (figure)
timing, 149–150
using extensions, 148–156
using hints, 156–158
using shifts, 158–160

Formal assessment, 231
Formative assessment, 231

assessment capable visible  
learners, 234

check-your-understanding questions, 
236, 239, 248

conceptual complexity, 236–237, 239, 
243–244

defined, 231
encrypted feedback, 243
FAQ, 242–249
feedback, 232, 234, 243
formal assessment, 231
grading in, 231–232
informal assessment, 231
information flow, 231–232
issue, 231–232
learning subtopics, 233–242, 245–247
macro-moves, 250
micro-moves, 250
navigation instruments, 234–242, 

245–249, 287
outcomes-based assessment, 

247–248, 258
problem, 232–233
quiz, 232, 236, 239
review test, 236, 239, 241, 248
standards-based assessment, 258
thinking classroom implementation, 

234–242
Try This activity, 251
using rubric, 242–243

Four-column rubric, 212 (figure)
collaboration, 213–218

Frequently asked questions (FAQ)
answering questions, 91–95
Building Thinking Classrooms 

Framework, 297–299
collaborative groups, 49–54
consolidation, 179–182
evaluation, 222–225
formative assessment, 242–249
furniture arrangement, 77–78
grading, 268–276
hints and extensions, 160–166
homework, 127–129
note taking, 201–204
student autonomy, fostering, 139–141
task allocation, 111–114
tasks, 30–35
workspace, student, 64–66

Frequent visibly random groups. See 
Visibly random grouping

FreshGrade, 274
Fronting, 74
Frustration, 147, 149, 155–157
Furniture arrangement, 12–13, 71

defronting, 75–76, 75 (figure)
FAQ, 77–78
fronting, 74–75
group size and, 78–79
issue, 71
macro-moves, 79
micro-moves, 79
optimal furniture placement, 73–74
orderly classroom, 75 (figure)
organization and expectation, 73–74
placement, 74 (figure)
problem, 71–72
science lab for math class, 78
in shared classroom, 78
super organized, 72
symmetrical furniture placement, 74
thinking classroom implementation, 

72–77, 285
Try This activity, 80–81

Gallery walk, 177–178, 180–182
Getting help behavior in homework, 

122
Good problem-solving tasks, 20
Grade-specific curriculum, 27
Grading, 253

anecdotal reporting, 261
attainment levels, 262–264, 270–271
averaging data, 272
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complexity level, attainment within, 
262–264

COP framework, 272–274, 272 
(figure)

creation, 262–267
data-gathering paradigm, 258, 268, 

272, 274
deflation, 268
event-based, 254–257, 265,  

271–272
evidence-based, 258
failing, 265
FAQ, 267–276
formative assessment, 231–232
group quizzes/tests, 254, 271, 274
group vs. individual, 271
inconsistency, 256, 276
inflation, 268
issue, 253–254
macro-moves, 277
measurement error, 256–257, 276
micro-moves, 277
myth of objectivity, 255–256
objective, 255–256
online-based, 271–272
outcomes and complexity levels, 

instrument for, 259–261
paradigm shift, 259, 267
pass, 265
performance levels, 261
point-gathering paradigm, 254–257, 

265–266, 271–272
problem, 254–258
retest, 275
standardized test, 274
thinking classroom implementation, 

259–267, 287–288
triangulation of data, 272–273, 

287–288
Try This activity, 278
tyranny of objectivity, 257

Graphic organizers, 195
with demarcated cells, 196, 196 

(figure)
with prelabelled cells, 197 (figure), 

198, 199 (figure)
with restricted cells, 195, 196 (figure)

Grouping. See Collaborative groups
Group quizzes/tests, 254, 271, 274
Growth mindset, 217
Guided gallery walk, 179, 181–182

Heterogeneous groups, 39
High-ceiling tasks, 23

Highly engaging thinking tasks, 21–22, 
31–32

High school
cell phone usage in, 104
challenge and skill balance, 151–152
grouping in, 40
highly engaging thinking tasks in, 

21–22
Hints, 145

for challenge and skill balance, 
156–158

for decreasing challenge, 156–157
FAQ, 160–166
for flow, 156–158
for increasing ability, 156–157
issue, 145
macro-moves, 166
micro-moves, 166
for notes, 202–203
problem, 145–146
thinking classroom implementation, 

146–160, 285–286
Try This activity, 168–169 See also 

Optimal experience
Homework, 119

assignments, 126
cheating behavior, 121–122
checking, 121
check-your-understanding questions, 

125–127
FAQ, 127–129
forgetfulness, 120
getting help in, 122
issue, 119
macro-moves, 130
marking, 120–121, 123–124,  

124 (figure)
micro-moves, 130
mimicking in, 122–123, 126
not doing behavior, 120
objectives of, 119, 125
practice, 124, 126
problem, 119–124
rebranding, 125
studenting behaviors, 120–124
thinking classroom implementation, 

124–126
trying it on their own behavior, 

122–123
Try This activity, 131
worked solution, 128–129
workspace. See Workspace, student

Homogenous groups, 39
How to Solve It (Pólya), 19
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Idea, borrowing, 48–49, 135–136
Implementation, thinking classroom, 

279–280
answering questions, 88–91
collaborative groups, 43–49
consolidation, 172–179, 285–286
evaluation, 211–222, 287
formative assessment, 234–242
furniture arrangement, 72–77, 285
grading, 259–267, 287–288
hints and extensions, 146–160, 

285–286
homework, 124–126
methods, 134–135
note taking, 193–201, 285–286
research, 280
student autonomy, fostering, 

134–139, 284
task allocation, 101–110
tasks, 25–30, 282–283
workspace, student, 58–64 See also 

Building Thinking Classrooms 
Framework

Individual understanding, collective 
synergy to, 288–293, 290 (figure)

Inflation, grading, 268
Informal assessment, 231
Institutional norms, 11–12 See also 

Issue, normative practices; 
Problem, normative practices

Intermediate highly engaging thinking 
tasks, 21

Issue, normative practices
answering questions, 83
collaborative groups, 39–40
consolidation, 171
evaluation, 209–210
formative assessment, 231–232
furniture arrangement, 71
grading, 253–254
hints and extensions, 145
homework, 119
note taking, 187
student autonomy, fostering, 133–134
task allocation, 99
tasks, 19–23
workspace, student, 57

I-write-you-write notes, 187, 201

Journaling, 283
Justifying, mode of engagement, 158

K–1 collaboration rubric, 215,  
216 (figure)

Keep-thinking questions, 87
proximity questions vs., 92

Kerkhoff, M., 32
Knowledge mobility, 47–49, 161

vertical surfaces and, 61, 64
Knowledge mobilization, 136–138, 

284–285

Learning, 145
assessment/evaluation and, 225, 

231–232
classroom setups and, 71
collective synergy to individual 

understanding, 288–293,  
290 (figure)

navigation instruments, 234–242, 
245–249, 287

notes as form of, 187, 200, 202
passive, 104
studenting and, 7–8. See also 

Studenting behavior
thinking relationship, 5, 152, 187

Lesson consolidation. See Consolidation
Lithner, J., 20
Live notes, 188–191
Local optimal thinking practice, 15
Low-floor task, 23

Macro-moves, 16
answering questions, 95
collaborative groups, 54
consolidation, 183
evaluation, 226
formative assessment, 250
furniture arrangement, 78
grading, 276
hints and extensions, 166
homework, 130
note taking, 205
student autonomy, fostering, 141
task allocation, 115
tasks, 35
workspace, student, 67

Mason, J., 198
Mathematical content knowledge, 20
Mathematical thinker, 26
Meaningful notes, 193–195, 285–286

in collective synergy to individual 
understanding transformation, 
289–293

consolidation and, 202
hints for, 202–203

Measurement error, grading, 256–257, 276
Micro-moves, 16
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answering questions, 95
collaborative groups, 54
consolidation, 183
evaluation, 226
formative assessment, 250
furniture arrangement, 78
grading, 276
hints and extensions, 166
homework, 130
note taking, 205
student autonomy, fostering, 141
task allocation, 115
tasks, 35
workspace, student, 67

Middle school
challenge and skill balance, 152–154
highly engaging thinking tasks in, 21

Mimicking, 9–10, 20
advantage, 30–31
disadvantage, 31
in homework, 122–123, 126
task, 26, 28–29
and task allocation, 114

Mobility of knowledge, 47–49
Mode of engagement, 158–160
Myth of objectivity, 255–256
The Myth of Objectivity (Romagnano), 

255

Navigation instruments, 234–242, 
245–249, 287–293

NCTM Principles and Standards, 19
Nexus of control, 43–45
Non-curricular tasks, 28–31, 152, 160

defined, 24
highly engaging, 31–32
students in flow on, 160 (figure)

Non–mathematics related activity,  
104, 136

Non-permanent surfaces, 62 (figure)
Non-routine tasks, 20
Non-thinking behavior, 5

from now-you-try-one task, 8–10
Not doing homework behavior, 120
Note taking, 57, 187

accuracy, 203–204
chronological/spatial sequencing and, 

189–190
in collective synergy to individual 

understanding transformation, 
289–293

competencies, 199
consolidating from bottom and, 202
copying, 189, 191

dead notes, 188–191
FAQ, 201–204
fill-in-the-blank notes, 187, 191, 201
for future forgetful selves, 193–200, 

204
graphic organizers for, 195–200, 204
hints for, 202–203
issue, 187
I-write-you-write notes, 187, 201
live notes, 188–191
macro-moves, 205
meaningful notes, 193–195, 202, 

285–286
micro-moves, 205
mindful notes, 193–195
as non-thinking activity, 192
online, 204
problem, 187–192
purpose of, 187
student notes, 201 (figure)
thinking classroom implementation, 

193–201, 285–286
Try This activity, 206–207
Type I graphic organizer, 195,  

196 (figure)
Type II graphic organizer, 196,  

196 (figure)
Type III graphic organizer, 197 

(figure), 198
Type IV graphic organizer, 198,  

199 (figure)
using examples and annotation, 194
value of, 192
worked examples, 198–200

Now-you-try-one task, 8–10
consolidation after, 171
studenting behaviors distribution on, 

10, 10 (figure)
Numeracy tasks, 21–23

Objective grading, 255–256
Objectivity

myth of, 255–256
tyranny of, 257

Observable competency, 220, 224
Observational rubric, 214, 224
O’Connor, K., 254, 257–258
Off-task behavior, 9
Online

grading, 271–272
note taking, 204
portfolios, 274

On-task behavior, 9
Open ended tasks, 23–24
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Open-middle tasks, 23–24
Opinion-based self-assessment, 247
Optimal experience, 146

boredom, 147, 149, 157
challenge and ability balance. See 

Challenge and skill balance
characteristics, 147
defined, 146
feedback, 150
flow. See Flow, optimal experience
frustration, 147, 149, 155–157
thick slicing sequence, 155
thin slicing sequence, 155–156,  

155 (figure)
Optimal furniture placement, 73–74
Optimal thinking practice, 15

answering questions, 83–97
collaborative groups, 39–55
consolidation, 171–185
evaluation, 209–229
formative assessment, 231–251
furniture arrangement, 71–81
grading, 253–276
hints and extensions, 145–169
homework, 119–131
note taking, 187–207
student autonomy, fostering, 133–143
task allocation, 99–117
tasks, 19–37
workspace, student, 57–69

Orderly classroom, 75 (figure)
Outcomes-based assessment

data-gathering paradigm, 258, 268, 
272, 274

navigation instrument, 247–248

Patience in flow, 163–164, 164 (figure)
Pedagogy, 39
Perseverance in flow, 163–164,  

164 (figure)
Perseverance rubric, 220 (figure)
Pimm, D., 198
Point-gathering paradigm, 254–257, 

265–266, 271–272
Pólya, G., 19
Portfolios, 274
Practice, 124, 126
Preloading, 163
Preteaching, 102
Primary grades

answering questions in, 90–91
check-your-understanding questions 

for, 129
highly engaging thinking tasks in, 21

task allocation in, 114
Primer, 29
Prior knowledge, 28, 33–34, 161
Problem, normative practices

answering questions, 83–87
collaborative groups, 40–42
consolidation, 171–172
evaluation, 210–211
formative assessment, 232–233
furniture arrangement, 71–72
grading, 254–258
hints and extensions, 145–146
homework, 119–124
note taking, 187–192
student autonomy, fostering, 134
task allocation, 99–100
tasks, 24–25
workspace, student, 57–58

Problem solving tasks, 19–20, 25
vignette, 1–5

Projector placement, 77–78
Proximity questions, 84–87

keep-thinking question vs., 92
response to, 89–90
smiling and walking away strategy, 

91, 93–94
unanswering, 90–93
walking away strategy, 90–91

Pseudostatements, 88–89
Public education, 172

Questions
answering. See Answering questions
check-your-understanding,  

125–128, 285
clarification, 87
keep-thinking, 87
proximity, 84–87
reduction strategies, 94–95
stop-thinking, 87
unanswering, 90–93, 139

Quiz, 232, 236, 239

Race, P., 223
Random grouping, 43, 50–51, 150

defronting with VNPSs and, 75–76
formation by playing cards activity, 

44, 50–51
methods, 51
students working independently in, 

133 (figure)
visibly, 44, 46–49
with VNPSs, 64
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Rebuilding Thinking Classrooms 
Framework, 294, 294 (figure)

first toolkit (toolkit #1), 295
second toolkit (toolkit #1), 295–296

Reification, 171
Retest, 275
Review test, 236, 239, 241, 248
Rich problem-solving tasks, 25
Rich tasks, 20, 22, 24–25
Role theory, 85
Romagnano, L., 255–256, 276
Rubric, 211–213

coconstruction of, 219, 223–224, 287
collaboration, 213 (figure),  

216 (figure)
collaboration vs. four-column, 

213–218
for competencies, 214, 218
creation, 218–221
four-column, 212 (figure)
headings, 217
K–1 collaboration, 215, 216 (figure)
language in, 217
for learning navigation, 242–243
number of columns in, 214–215
observational, 214, 224
perseverance, 220 (figure)
presentation, 221–222
for producibles, 224–225
recording, 222–223
for self-evaluation, 217, 222
T-chart, 220–221, 220 (figure)
three-column, 215, 217
using exemplars, 224–225

SAT-I mathematics test, 256
Schoenfeld, A., 171
Scripted curricular thinking tasks, 

27–30
SeeSaw, 274
Self-assessment, 247

feedforward, 247
navigation instruments, 234–242, 

245–249, 287
now-you-try-one task, 8–11
opinion-based, 247
outcomes-based, 247
See also Formative assessment

Self-evaluation, 223
rubrics for, 217, 222
See also Evaluation

Self-selected groups, 40–42, 45
Sense making, 84
Shower board, 63

Sitting students
anonymous state, 61–62
cell phone usage among, 104, 176
standing vs., 61, 104
task allocation among, 103–104

Ski trip fundraiser, 23
Slacking behavior, 9
Smiling and walking away strategy, 91, 

93–94
Smith, M., 179
Social barriers, 46–47
Social goals, 39–40
Socialization, 40, 100, 140
Social stress, 48–49
Stalling behavior, 9, 58
Standardized test, 274
Standards-based assessment, 258
Standing students

cell phone usage among, 104, 176
knowledge mobility and, 61
sitting vs., 61, 104
task allocation among, 103–104, 103 

(figure), 111
Stein, M. K., 179
Stiggins, R., 254
Stop-thinking questions, 87

answering, 91–92
response to, 89–90
smiling and walking away strategy, 

91, 93–94
unanswering, 90–93
walking away strategy, 90–91

Strategic grouping, 39, 41–43
Student autonomy, fostering, 133

active interaction with groups, 
135–137, 137 (figure), 140

copying and, 139
directing students to other groups, 

136–137
FAQ, 139–141
issue, 133–134
knowledge mobilization and, 

136–138, 284–285
lack of, 134
macro-moves, 141
micro-moves, 141
passive interaction with groups, 

135–137, 137 (figure), 140
problem, 134
raising hands after task allocation, 

135
thinking classroom implementation, 

134–139, 284
Try This activity, 142–143
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Studenting behavior, 7
cheating, 121–122, 138
defined, 7
distribution of, 10, 10 (figure)
faking, 9
getting help, 122
homework, 120–124
learning and, 7–8
mimicking, 9–10
norms, 13
not doing homework behavior, 120
now-you-try-one task, 8–10
slacking, 9
stalling, 9
trying it on their own, 10,  

122–124
Student-responsibility practices, 292
Students

active and passive state, 103
anonymous state, 61–62
asynchronous activity, 145
fixed mindset, 217
growth mindset, 217
non-thinking, 4–6, 6 (figure), 7–11
notes, 201 (figure). See also Note 

taking
socially defined roles, 85–86
synchronous activity, 145
teachers answering student questions. 

See Answering questions
thinking. See Thinking
in traditional classroom, 3 (figure)
workspace. See Workspace, student

Subjective knowledge, 256
Summative evaluation, 231
See also Evaluation
Super organized classroom, 72
Symmetrical furniture placement, 74
Synchronous activity, 145
System theory, 283

Table arrangement. See Furniture 
arrangement

Task allocation, 99
at beginning of lesson, 102–103
classroom workspace and, 111
of data analysis/graphing, 113
at end of lesson, 101
FAQ, 111–114
forms, 104–110
groundwork before, 106, 109
issue, 99
macro-moves, 115
micro-moves, 115

at middle of lesson, 101
mimicking and, 114
in primary classrooms, 114
problem, 99–100
raising hands after, 135
among sitting students, 103–104
among standing students, 103–104, 

103 (figure), 111
storytelling, 114
tax collector task, 107–110
from textbook/workbook, 100
by textual instructions, 106–112
thinking classroom implementation, 

101–110
timing of, 101–103
Try This activity, 116–117
by verbal instructions, 105–112
in worksheet form, 104–105
writing on vertical surface, 105

Tasks, 19
card tricks, 21–22
curriculum, 26, 28–31, 33
elementary classroom students in 

thinking, 26 (figure)
FAQ, 30–35
good problem-solving, 20
high-ceiling, 23
highly engaging thinking, 21–22
issue, 19–23
low-floor, 23
macro-moves, 35
micro-moves, 35
mimicking, 28–29
non-curricular, 28–31, 152, 160
non-routine, 20
now-you-try-one, 8–10
numeracy, 21–23
off-task behavior, 9
on-task behavior, 9
open ended, 23–24
open-middle, 23–24
problem, 24–25
problem-solving, 19–20, 25
resources, 99
rich, 20, 22, 24–25
scripted curriculum, 27–30
ski trip fundraiser, 23
textual, 106–112
thick slicing sequence, 155
thinking classroom implementation, 

25–30, 283–284
thin slicing sequence, 155–156,  

155 (figure)
true or false, 24



314 BUILDING THINKING CLASSROOMS IN MATHEMATICS

Try This activity, 37, 68–69
verbal, 105–112
word problems, 24–25

T-chart, 220–221, 220 (figure)
Teachers dilemma, 5
Teaching, 7, 133, 145, 231–232

on assumption, 4–6
as mode of engagement, 158–159
preteaching, 102

Tests, 253, 261, 269
Textbook exercises, 164–165
Textual task, 106–112

late students and, 106, 112–113
parts rule, 113
tax collector task, 107–110

Thick slicing sequence, 155
Thinking

and engagement, 146
furniture and, 12–13
and learning relationship, 5, 152, 187
local optimal practice, 15
non-thinking, 4–11, 6 (figure)
optimal practice for, 15. See also 
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