
Define tomorrow. university
of south africa

UNIT 6 U6/0/2024

Machine Learning

COS4852

Year module

Department of Computer Science

School of Computing

CONTENTS

This document contains the material for UNIT 6 for COS4852 for 2024.

COS4852/U6/0/2024

1 OUTCOMES

In this Unit you will learn about the Bayesian approach to machine learning. Specifically you will
study:

1. The mechanics of Bayes’ Theorem.

2. How to build a model of related events using Bayes’ theorem.

3. A theoretically ideal probabilistic model, the Bayes Optimal classifier.

4. A more practical model, the Naive Bayes Classifier.

5. How to depict the probabilities of related events using a Bayesian Belief Network.

After completion of this Unit you will be able to:

1. Understand and describe Bayes’ Theorem.

2. Solve a given learning task using the Bayes Optimal Classifier.

3. Solve a given learning task using the Naive Bayes Classifier.

2 PREPARATION

2.1 Textbooks

Chapter 6 of Tom Mitchell’s book discusses Bayes’ Theorem in relation to Concept Learning, and
goes on to the Bayes Optimal Classifier (a theoretical model of the ideal probabilities classifier),
then on the Naive Bayes Classifier (which can be used in the real world) and also Bayesian Belief
Networks, which is a useful way to visually depict the probabilities involved in event that are related
to each other.

2.2 Online Material

Here is an excellent lecture on Bayes’ Theorem, with several practical examples, worked through
in detail. There are no mathematics in this video, just simple explanations using diagrams and
highlighting the important things to keep in mind when thinking Bayesian. This should help you
grasp the concepts behind Bayes’ Theorem.

This page on BetterExplained gives a short, intuitive explanation on Bayes’ Theorem using cancer
tests and spam detection as examples.

2

https://www.youtube.com/watch?v=BrK7X_XlGB8
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/

COS4852/U6

This TDS article is an excellent, mathematically based discussion on Bayes’ Theorem using a
COVID test and its results as the example.

Allen Kim gives an interactive visual description to help you understand what happens to the
posterior probabilities (the model) when the prior probabilities are changed in Bayes’ Theorem.

This YouTube video gives a detailed and step-by-step work-through of the Naive Bayes Classifier.

3 INTRODUCTION

Thomas Bayes was a Presbyterian minister in the mid 1700’s, and also a lay statistician, as so
many scientists were in those days. He is famous for the theorem named after him. He worked
on the problem of assigning a probability to an event (called an unobserved variable) of which
we only have information on related events. His observation was that if you have some initial
conditional probabilities (called beliefs in inferential statistics), and you then get new objective data
on related events you can improve your initial probabilities (improved beliefs). He used his theorem
to investigate why it seems that slightly more boys than girls are born (the actual ratio is about
106 boys born for every 100 girls born – 51.5%:48.5%). He spent decades collecting demographic
data from around the world (this was the 1700s, and there was no Google), and using his theorem,
concluded that this ratio is the same everywhere and determined by biology.

Bayes’ Theorem also plays a central role in many machine learning algorithms. In most real-world
problems involving large volumes of data, the models being built will give you a probability as
output, or a set of classifications with probabilities assigned to them indicating the likelihood of each
classification being correct.

3.1 Bayes’ Theorem

Let’s work through an example to see Bayes’ Theorem in action.

Here are some more online material that will help you in the following discussion:

• A page on sensitivity and specificity.

• https://byjus.com/maths/bayes-theorem/

• https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bay

es-theorem/

• https://en.wikipedia.org/wiki/Sensitivity and specificity

• https://microbenotes.com/sensitivity-specificity-false-positive-false-negative

/

3

https://towardsdatascience.com/bayes-theorem-clearly-explained-with-visualization-5083ea5e9b14
https://allenkim67.github.io/bayes-demo/
https://www.youtube.com/watch?v=O2L2Uv9pdDA
https://microbenotes.com/sensitivity-specificity-false-positive-false-negative/
https://byjus.com/maths/bayes-theorem/
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://microbenotes.com/sensitivity-specificity-false-positive-false-negative/
https://microbenotes.com/sensitivity-specificity-false-positive-false-negative/

In the world we are experiencing now, people have become a lot more aware of medical test
results. One question that most people would want to have answered: How accurate is a test for an
infection?

There are terms often used in medical test results, and are vital in correctly interpreting a test result:

1. Prevalence: the ratio of the total population who is infected.

2. True positive (TP): the ratio of the total tests that are accurately labelled as positive. This is
dependent on the prevalence.

3. True negative (TN): the ratio of the total tests that are accurately labelled as negative. This is
dependent on the prevalence.

4. Sensitivity: (true positive rate TPR) the ratio of positive tests that are accurately labelled as
positive. This is independent of the prevalence.

5. Specificity: (true negative rate TNR) the ratio of negative tests that are accurately labelled as
negative. This is independent of the prevalence.

6. Positive Predictive Value (PPV): the probability of an infection given a positive test result.

7. Negative Predictive Value (NPV): the probability of no infection given a negative test result.

Consider the data on a medical test for SUPERBUG:

1. Out of every 10 000 people with a record of possible symptoms, more or less 100 people were
diagnosed with SUPERBUG. These are confirmed cases, based on a combination of doctors’
diagnoses, CT-scans, several different tests, and postmortem analyses.

2. It is known that for this test, 10 out of 100 positive test results are incorrect. This is the inverse
sensitivity of the test.

3. It is known that for this test, 10 out of 50 negative test results are incorrect. This is the inverse
specificity of the test.

You have just been tested for SUPERBUG, but are still waiting for your results. Obviously you will
want to know what a positive or negative result will tell you about the likelihood that you have been
infected with SUPERBUG, so that you can decide how to deal with the result.

Define the variables. Let:

Bug ← a person is infected with SUPERBUG
¬Bug ← a person is not infected with SUPERBUG

Pos ← a positive test result
Neg ← a negative test result

= ¬Pos

4

COS4852/U6

The actual prevalence (base rate) is unknown. We can only know that number if everybody is tested,
with a test that is 100% accurate, and everybody is tested in a very short space of time, or everybody
get retested at short intervals. There is no test that is 100% accurate and mass testing is very
expensive and complicated. We can therefore only use the frequency of the number of confirmed
positive cases against the population size. This will be our best estimate for prevalence. Since we
were given a population of 10 000, we will use this number as a convenient population sample to
calculate the ratios.

P(Bug) ← prevalence
≈ 100/10 000

= 0.01

and therefore:

P(¬Bug) ← inverse prevalence
= 1− 0.01
= 0.99
= 9 900/10 000

The known sensitivity and specificity tells us that:

P(Pos|Bug) ← sensitivity
= (100− 10)/100

= 0.9
= 90/100

P(Neg|¬Bug) ← specificity
= (50− 10)/50

= 0.8
= 7 920/9 900

We can also write down their inverses:

P(Neg|Bug) ← 1− P(Pos|Bug)
= 1− 0.9
= 0.1
= 10/100

P(Pos|¬Bug) ← 1− P(Neg|¬Bug)
= 1− 0.8
= 0.2
= 1 980/9 900

Therefore, of the 100 infected people (out of the population of 10 000), 90 get positive results,
and 10 get negative results. Of the 9 900 people not infected (out of the population of 10 000),

5

0.8× 9 900 = 7 920 get negative results, and 9 900− 7 920 = 1980 get positive results. Therefore
90 + 1 980 = 2 070 came back positive, and 7 920 + 10 = 7 930 came back negative.

We can also now write down the following probabilities:

True positive ← ratio of all tests correctly labelled as positive
= 90/10 000

= 0.009
True negative ← ratio of all tests correctly labelled as negative

= 7 920/10 000

= 0.792
False positive ← ratio of all tests incorrectly labelled as positive

= 1 980/10 000

= 0.198
False negative ← ratio of all tests incorrectly labelled as negative

= 10/10 000

= 0.001

We can represent these values in table form, as shown in Table 1 and Table 2. Figure 1 shows
this visually, but the small ratios make this not so easy to see. Figure 2 shows another set of
ratios, where the prevalence becomes 25%, which gives a better idea. As an exercise, repeat the
calculations for a prevalence of 25%, to see if you can get the same numbers as in the figure.

Bug ¬Bug totals
Pos 90 1980 2070
Neg 10 7920 7930

totals 100 9900 10 000

Table 1: Ratios (out of 10 000) for SUPERBUG and it’s test.

Bug ¬Bug totals
Pos 0.009 0.198 0.207
Neg 0.001 0.792 0.793

totals 0.010 0.990 1.000

Table 2: probabilities for SUPERBUG and it’s test.

What we cannot immediately calculate, are the following:

P(Bug|Pos) ← chance of having the bug given a positive test
P(Bug|Neg) ← chance of having the bug given a negative test

P(¬Bug|Pos) ← chance of not having the bug given a positive test
P(¬Bug|Neg) ← chance of not having the bug given a negative test

6

COS4852/U6

(+)inf = 100(+)inf = 100

(-)inf = 9900(-)inf = 9900

infectionsinfections

Tpos = 90Tpos = 90
Fneg = 10Fneg = 10

Fpos = 1980Fpos = 1980

Tneg = 7920Tneg = 7920

pos = 2070pos = 2070

neg = 7930neg = 7930

teststests

Tpos = 90Tpos = 90

Fpos = 1980Fpos = 1980

Fneg = 10Fneg = 10

Tneg = 7920Tneg = 7920

1000010000

sensitivity = 0.9sensitivity = 0.9

specificity = 0.8specificity = 0.8

prevalence = 0.01prevalence = 0.01

population = 10000population = 10000

Figure 1: Bug test ratios shown visually for a prevalence of 0.01.

7

(+)inf = 2500(+)inf = 2500

(-)inf = 7500(-)inf = 7500

infectionsinfections

Tpos = 2250Tpos = 2250

Fneg = 250Fneg = 250

Fpos = 1500Fpos = 1500

Tneg = 6000Tneg = 6000

pos = 3750pos = 3750

neg = 6250neg = 6250

teststests

Tpos = 2250Tpos = 2250

Fpos = 1500Fpos = 1500

Fneg = 250Fneg = 250

Tneg = 6000Tneg = 6000

1000010000

sensitivity = 0.9sensitivity = 0.9

specificity = 0.8specificity = 0.8

prevalence = 0.25prevalence = 0.25

population = 10000population = 10000

Figure 2: Bug test ratios shown visually for a prevalence of 0.25.

8

COS4852/U6

Bayes’ rule can be used to calculate these probabilities, and is expressed using the prior (known)
probabilities P(A), P(B), and the probability of B given that A is true, P(B|A). Bayes’ theorem gives
us the probability of A given B, P(A|B) as:

P(A|B) =
P(A)P(B|A)

P(B)

where
P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)

To summarise the known probabilities:

P(Bug) = 0.01
P(¬Bug) = 0.99

P(Pos|Bug) = 0.90
P(Neg|Bug) = 0.10

P(Neg|¬Bug) = 0.80
P(Pos|¬Bug) = 0.20

To test the posterior probability of having SUPERBUG, given that the test results came back positive,
let:

A = Bug
B = Pos

Plugging these into Bayes’ theorem, we get:

P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)
P(Pos) = P(Bug)P(Pos|Bug) + P(¬Bug)P(Pos|¬Bug)

= (0.01× 0.90) + (0.99× 0.20)
= 0.009 + 0.198
= 0.207

P(A|B) =
P(A)× P(B|A)

P(B)

P(Bug|Pos) =
P(Bug)× P(Pos|Bug)

P(Pos)

=
0.01× 0.90

0.207

=
0.009
0.207

= 0.04348

9

To test the posterior probability of not having SUPERBUG, given that the test results came back
negative, let:

A = ¬Bug
B = Neg

P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)
P(Neg) = P(¬Bug)P(Neg|¬Bug) + P(Bug)P(Neg|Bug)

= (0.99× 0.80) + (0.01× 0.10)
= 0.792 + 0.001
= 0.793

P(A|B) =
P(A)× P(B|A)

P(B)

P(Bug|Neg) =
P(¬Bug)× P(Neg|¬Bug)

P(Neg)

=
0.99× 0.80
0.000792

=
0.792
0.793

= 0.9987

This means that a positive test results indicated that you only have a 4.3% likelihood of being
infected with SUPERBUG. The reason for this very low number is related to the low figure we have
for the prevalence of the infection in the population. This means that most people who are testes,
and gets a positive result have not been infected. In a pandemic this may be acceptable, since you
want to prevent the spread of the infection. In a situation where the majority of people are negative,
mass testing will not be helpful. When the testing regime is changed to only test people with a high
likelihood of being positive (such as having known symptoms, or having been exposed to a known
person with the disease), the prevalence in the tested population will go up, and the PPV will also
increase.

Something else to consider is that the prevalence is related to the population being tested. If the
tests are done randomly, you would see the sort of figures shown here. However, in reality people
are only tested when there is a valid suspicion that they may be positive, such as having most of the
related symptoms, or if they have been exposed to a known positive person. In such a population,
the prevalence will go up significantly, with a 25% prevalence being about right. Even in such a
case, there are still very many false positives, but the false negatives are very low.

Similarly, we can calculate the posterior probability of not having SUPERBUG, given a negative test
result:

A = ¬Bug
B = Neg

10

COS4852/U6

Bayes’ theorem therefore tells us:

P(¬Bug|Neg) =
P(¬Bug)× P(Neg|¬Bug))

P(Neg)

=
0.9891× 0.98

0.9694
= 0.9999

which means that a negative test results indicates that you have an almost 100% likelihood of not
being infected with SUPERBUG.

Keep in mind that the numbers used here are purely hypothetical, and does not reflect any real
figures. False positive and false negative rates are as problematic in a new test as the prevalence
numbers would be. In the real world, you don’t look at the test results in isolation. First, there is
the uncertainty of the actual frequency of the population who has the infection. When looking at
something like cancer tests, where their is a long history of medical data to work with, the figures
about prevalence is very accurate, and becomes more so as more data is collected. At the start of a
pandemic there simply is not enough data to get the prevalence accurately enough, and estimates
are used, with various models developed specifically for this.

The timing of the test for a viral infection has an important part to play in the accuracy of test results.
Viral tests, for example, are dependent on the patient having enough viral particles for the test to
extract sufficient material for the test, and a day makes a huge difference in the viral load. Further,
RNA tests are highly sensitive, due to the RNA being unique for every entity. Such a test usually has
a very low false positive rate, but the false negative could be very high due to timing, mishandling of
the sample, lab errors, and so on.

The prevalence would also change as the outbreak progresses, but will get more accurate in time.
In the case of some outbreaks, there are people who are positive, but does not experience any
symptoms. Most of these people will not get diagnosed, nor tested. This would therefore mean
that the prevalence rate is underestimated. Antibody tests may indicate whether somebody have
had the infection in the past, which could then be added to the prevalence numbers. Again, such
tests will not be done on everybody, for practical and economic reasons, and people may lose their
immunity in time. In short, the prevalence rate is at bet an estimate.

In a pandemic situation, where the bulk of the population does not have the infection, we find that
the probability of a positive test being correct is much lower than a negative test being correct. Here
is an excellent page that explains why it is important to use a test that has high specificity.

3.2 Bayesian Optimal Classifier

Bayes Optimal Classifier is a technique that will maximise the probability that a new instance is
classified correctly, if the same data, hypothesis space, and prior probabilities over the hypothesis
space are used. It will effectively outperform any other classification method in terms of accuracy.
The model is described as a classification technique, but the same principles can be applied to a
regression task.

11

https://www.bmj.com/content/369/bmj.m1808
https://www.bmj.com/content/369/bmj.m1808

In practice, however, this model is difficult to use, as the computational cost is too high. It serves as
the basis for other, more practical models, such as the Naive Bayes Classifier.

Bayes Theorem provides a principled way for calculating conditional probabilities, called a posterior
probabilities. This is used in the Maximum a Posteriori (MAP) framework that finds the most probable
hypothesis that describes the training data-set. Bayes Optimal Classifier is a probabilistic model
that finds this most probable prediction for a new instance, using the training data and its hypothesis
space.

Lets’ start with the question:

What is the most probable hypothesis, given the training data?

There are two statistical approaches to answering this question:

• Maximum a Posteriori (MAP)

• Maximum Likelihood Estimator (MLE)

MAP follows a Bayesian approach, while MLE tackles the problem from a frequentist angle. Both fits
an optimisation model to the data, and classifies a new instance by searching for the most probable
distribution and set of parameters that describes the training data.

This blogpost on Medium shows you how to calculate MLE and MAP for a data-set using Bayes’
Theorem.

We can use Bayes’ Theorem to estimate the proportional hypothesis and parameter (θ) that explains
the data-set X . This can be written as:

P(θ|X) = P(X |θ) · P(θ)

By maximising this probability over a range of θ values, we can estimate the central tendency of the
posterior probability, i.e. build a model of the distribution. This technique of maximising the posterior
probability, is called the maximum a posteriori estimation, or MAP for short.

The MAP technique tells us which is the most probable hypothesis for a new instance given the
training data-set. The real question we want to ask is: What is the most probable classification of
the new instance given the training data-set?. At first it may seem as we simply apply MAP to the
new instance, it is possible to do better.

Consider a hypothesis space consisting of 3 hypotheses, h1, h2, and h3. The posterior probabilities
of these hypotheses given the data-set are 0.4, 0.3, and 0.3, respectively (note that they add up to a
total probability of 1.0). Since the posterior probability of h1 is the highest (maximum), this means
the h1 is the MAP hypotheses for this data-set.

12

https://medium.com/jun94-devpblog/ml-1-maximum-likelihood-ml-and-maximum-a-posteriori-map-estimation-4f9927897daf

COS4852/U6

A new instance x is classified as positive (⊕) by h1 and negative () by both h2 and h3. If we consider
the posterior probabilities, the most probable classification is 	 since their combined probability is
0.6, while h1 only has a 0.4 probability for x being ⊕. The most probable classification is different
from the MAP result.

We can generalise this. To get the most probable classification of a new instance we can combine
the classification of all hypotheses and weight them by their posterior probabilities. Therefore, if the
new instance can be classified as any value vj from a set V (only ⊕ and 	 in the above example), the
conditional probability P(vj |D) (D is the data-set) that the correct classification for the new instance
is vj is:

P(vj |D) =
∑
hi∈H

P(vj |hi) · P(hi |D)

The optimal classification of the new instance is the value vj , for which

arg max
vj∈V

∑
hi∈H

P(vj |hi) · P(hi |D)

This is the Bayes’ Optimal Classification.

Let’s look at our example again. The possible classifications for x is V = {⊕,	}, and the conditional
probabilities are:

P(h1|D) = 0.4
P(|h1) = 0.0
P(⊕|h1) = 1.0

P(h2|D) = 0.3
P(|h2) = 1.0
P(⊕|h2) = 0.0

P(h3|D) = 0.3
P(|h3) = 1.0
P(⊕|h3) = 0.0

To get the Bayes’ Optimal Classification for the instance x , we use these values and do the following:

∑
hi∈H

P(⊕|hi) · P(hi |D) = 0.4

∑
hi∈H

P(|hi) · P(hi |D) = 0.6

and

13

arg max
vj∈{⊕,	}

∑
hi∈H

P(vj |hi) · P(hi |D) = 	

No other classification method can outperform this one, given the same information. Given that
there is uncertainty in the data (we are using probabilities after all), and that we have incomplete
information about the domain and hypothesis space, the classifier will make mistakes (the so-called
Bayes error, which is the best any model can do). The technique is optimal in the sense that, on
average, it will have the lowest error rate on the classifications it makes.

A quick calculation on the above example will show you that this is a very expensive algorithm, since
we have to calculate the posterior probability for every hypothesis, and combine these predicted
classification, for every new instance. In real-world problems with incomplete and noisy data, we
don’t even have the complete hypothesis space and we cannot calculate the conditional distribution
of the model output over its input.

Thus, the Bayes’ Optimal Classifier is the unattainable ideal, and in practice we use less optimal
variations of the Bayes’ Optimal Classifier, or other algorithms using the same principles.

Two algorithms that does this are:

Gibbs Algorithm This is a simple algorithm, where we randomly pick a hypothesis from H, based
on the posterior conditional distribution over H, to predict the classification of x . It does
surprisingly well, with at most double the optimal Bayes error.

Naive Bayes Classifier Here we assume that the attributes in the input space are conditionally
independent, given the target value, which simplifies the search space significantly. More on
this in the next section.

As a comparison, the relatively straightforward k-NEAREST NEIGHBOURS algorithm often comes
very close to the optimal Bayes error for certain domains.

3.3 Naive Bayesian classifier

Consider the learning task where each instance x is described by a conjunction of attribute values,
and where the target function can take on any value from a finite set V . There is a set of training
examples. The learner is tasked with classifying a new instance , described by the tuple 〈a1, a2, ... an〉.
The Bayesian approach would be to assign the most probable target value, vMAP :

vMAP = arg max
vj∈V

P(vj |a1, a2, ... an) (1)

Using Bayes’ Theorem we can re-write this expression as:

vMAP = arg max
vj∈V

P(a1, a2, ... an|vj)P(vj)
P(aa, a2, ... vn)

(2)

= arg max
vj∈V

P(a1, a2, ... an|vj)P(vj) (3)

14

COS4852/U6

We need to estimate the two terms of Equation 3. Getting P(vj) can be done simply by counting
the frequency of vj in the training data. Estimating P(a1, a2, ... an|vj is far more difficult. Getting
a reliable estimate here can only be done if we have a very large data set where we see every
instance in the instance space many times. This is not feasible in practice. We therefore need to
make some simplifying assumptions. These simplifications are why we use the term naive. Here
you can immediately see that there may be many possible simplification assumptions. Hence Naive
Bayes is really more a family of learners than a single one, where the only real difference is in the
assumptions being made.

We can make a simplification by assuming that the attribute values are conditionally independent
of the target value - given the target value of a specific instance, the probability of observing the
conjunction a1, a2, ... an is simply the product of the probabilities of the individual attributes:

P(a1, a2, ... an|vj) =
∏

i

P(ai |vj) (4)

Substituting Equation 4 into Equation 3, we get the Naive Bayes Classifier, namely:

vNB = arg max
vj∈V

P(vj)
∏

i

P(ai |vj) (5)

Learning in Naive Bayes occurs when we estimate all the P(vj) and P(ai |vj) values, based on their
frequencies in the training data. This set of estimates comprise the learned hypothesis. Each new
instance is then classified by applying Equation 5.

You can read more on the family of Naive Bayes classifiers in the Scikit-Learn documentation and
this page at Datacademia.

3.3.1 An example of using Naive Bayes

The classic example data set here is the PlayTennis set, where we try to decide whether to play
tennis or not, based on previously observed weather data (Outlook, Temperature, Humidity, Wind),
and the current values of these weather variables. A CSV file with the data set is on Kaggle.

We have the new instance (today’s weather data):

〈Outlook = sunny , Temperature = cool , Humidity = high, Wind = strong〉

The task is to determine the target value, PlayTennis as either yes or no. Apply the frequencies of
the data set to Equation 5:

vNB = arg max
vj∈{yes,no}

P(vj)
∏

i

P(ai |vj) (6)

= arg max
vj∈{yes,no}

P(Outlook = sunny |vj) · P(Temperature = cool |vj) ·

P(Humidity = high|vj) · P(Wind = strong|vj) (7)

15

https://scikit-learn.org/stable/modules/naive_bayes.html
https://datacadamia.com/data_mining/naive_bayes
https://www.kaggle.com/datasets/fredericobreno/play-tennis

The probabilities of the two possible target values can be estimated from the data:

P(PlayTennis = yes) = 9/14 = 0.64 (8)
P(PlayTennis = no) = 5/14 = 0.36 (9)

The conditional probabilities can also be calculated from the data:

P(Wind = strong|PlayTennis = yes) = 3/9 = 0.33 (10)
P(Wind = strong|PlayTennis = no) = 3/5 = 0.60 (11)

Plug these values into Equation 7 to get:

P(yes)P(sunny |yes)P(cool |yes)P(high|yes)P(strong|yes) = 0.0053 (12)
P(no)P(sunny |no)P(cool |no)P(high|no)P(strong|no) = 0.0206 (13)

The new instance is therefore classified as PlayTennis = no. To get the conditional probability that
the target value is no, given the observed attribute values, normalise the quantities:

P(PlayTennis = no|ai) =
0.0206

0.0206 + 0.0053
= 0.795 (14)

You see here that probabilistic learners give us a more nuanced answer, instead of just a classifica-
tion. The most likely classification is given as no, with a probability of 0.795 (about 80%) of being
correct, assuming our simplification is valid.

To see this example in code, there is a worked Python example on Kaggle.

3.4 Bayesian Belief Networks

A Bayesian Belief Network (BBN) is a directed acyclic graph (DAG) that represent the conditional
dependencies between variables related to a specific causal problem. We can use this paper by
Bromley to illustrate a BBN.Bromley’s paper applies BBNs to a real-world problem, but is also does
a very good job of taking you step-by-step through the contruction of a BBN.

A BBN consists of a number of nodes linked to each other with transitions (directed arrows) that
captures the causal relationship between variables (sometimes called facts). Bromley’s paper
discussed how BBNs can be used to facilitate water resource management and decision making. In
his paper he shows that the Annual River Flow is dependent on the Percentage Forest Cover and
the Annual Rainfall. If either or both of the last two change the Annual River Flow will also change.
In its turn, the river flow determine how much water will be available for storage in reservoirs, as well
as the size of the fish population. The size of the fish population then has an effect on the potential
for anglers to catch fish. Similarly, forest cover inversely determines how much land is available for
farming purposes. More forest means less farmland. The available farmland in turn determines
agricultural production, which then determine farmers’ income.

Eugene Charniak wrote an excellent introduction to BBNs that will also take you step-by-step
through BBNs, their contruction, and their application.

Jason Brownlee also makes an attempt at a gentle introduction to BBNs. It is worth a read, though
the paper by Charniak is the best references of the three given here.

16

https://www.kaggle.com/code/umangdobariya1436/naive-bayes-classifier-internal-working
https://core.ac.uk/download/pdf/62847.pdf
https://core.ac.uk/download/pdf/62847.pdf
https://core.ac.uk/download/pdf/62847.pdf
https://www.cs.ubc.ca/~murphyk/Bayes/Charniak_91.pdf
https://machinelearningmastery.com/introduction-to-bayesian-belief-networks/

COS4852/U6

4 ACTIVITIES

4.1 TASK 1 - STUDY THE NOTES

Find all the links referred to in this document, and study these in detail. In some cases more than
one reference is given to give you a slightly different perspective or as an alternative.

4.2 TASK 2 - Bias and Variance

Look at the StatQuest YouTube on Bias and Variance in order to learn about this very important
problem in statistics that has a huge effect on what is possible and not possible in Machine Learning
models.

4.3 TASK 3 - Covid

This article on the Story of Mathematics (SOM) gives seven worked example of using Bayes’
Theorem on real-world data. Three of these examples look at cancer in dogs and the eradication of
smallpox. Study these. Then find open-source data on similar figures for Covid (transmission of
the virus, figures related to mask wearing, etc) and Covid tests and vaccinations (test sensitivity,
specificity, etc.) and repeat the exercise in Section 3.1 with your data.

© UNISA 2024

17

https://www.youtube.com/watch?v=EuBBz3bI-aA
https://www.storyofmathematics.com/bayes-theorem/

	OUTCOMES
	PREPARATION
	Textbooks
	Online Material

	INTRODUCTION
	Bayes' Theorem
	Bayesian Optimal Classifier
	Naive Bayesian classifier
	An example of using Naive Bayes

	Bayesian Belief Networks

	ACTIVITIES
	TASK 1 - STUDY THE NOTES
	TASK 2 - Bias and Variance
	TASK 3 - Covid

