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A decision tree is a tree-like visual representation that work similarly to a flow-chart to make or
support decisions. Each node in the decision tree is an attribute that splits the data set into subsets
that correspond to specific values of that attribute. Each node then becomes a single decision point,
where a specific value of the attribute leads to sub-trees, until all the attributes are assigned to a
node, and final decision values are reached.

OUTLOOK

HUMIDITY WINDyes

yes yesnono

sunny rainovercast

high normal strong weak

Figure 1: Example decision tree

Figure 1 shows an example of a small decision tree that could be used to determine whether to play
sport based on the values of three weather variables: Outlook, Humidity and Wind.

1 OUTCOMES

In this Unit you will learn more about the theoretical basis of decision trees, and understand how to
apply one of the algorithms used to construct a decision tree from a dataset. You will learn how to
describe and solve a learning problem using decision tree learning.

You will:

1. Understand the relationship between Boolean function, binary decision trees and decision
lists.

2. Learn about the theoretical basis of decision trees.

3. Understand what kinds of problems can be solved using decision trees.

4. Understand how the ID3 algorithm works.
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5. Learn how to solve classification problems using ID3.

After completion of this Unit you will be able to:

1. Translate a Boolean function into a binary decision tree.

2. Convert a Boolean function into a decision list.

3. Understand and recognise appropriate learning problems that can be solved with decision
tree learning.

4. Design a Classification System using decision trees.

5. Discuss the theoretical basis of decision trees.

6. Understand and describe how decision tree search is performed in hypothesis space, including
the inductive bias implicit in decision tree learning.

7. Understand the advantages and limitations of decision trees, including overfitting of data,
continuous-valued attributes, alternative methods for selecting attributes, missing attribute
values and attributes with different costs.

8. Discuss what kinds of problems can be solved using decision trees.

9. Solve classification problems by implementing the ID3 algorithm on given data sets.

2 INTRODUCTION

In this Unit you will investigate the theory of decision trees and learn how to describe and solve a
learning problem using decision tree learning, using the ID3 algorithm.

There are many algorithms to construct decision trees. The most famous of these is Ross Quinlan’s
ID3 algorithm that are used to construct a decision tree on a set of discrete and integer data values.
There are variants of ID3 that can operate on continuous-valued datasets, as well as variants that
use a statistical approach. There are also more complex algorithms that construct a collection of
trees, called a forest-of-trees, which, although more complex, give more options for making accurate
decision based on complex data.

3 PREPARATION

3.1 Online textbooks

Chapter 6 in Nilsson’s book works through the ID3 algorithm for decision tree construction, using a
slightly different notation from what we will be using.
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3.2 Textbooks

Chapter 3 of Mitchell’s book goes into some depth on decision trees.

Sections 18.1 to 18.4 in Russell and Norvig’s 3rd edition is also a good source in decision lists.

3.3 Online material

Here is simple explanation of Entropy and Information Gain.

The original 1986 article by Ross Quinlan describes one of the most successful algorithms to create
decision trees.

This IBM article gives a detailed discussion on what a decision tree is and does, and how to do the
basic ID3 calculations.

The Wikipedia page on ID3 gives a good overview of the ID3 algorithm.

4 DISCUSSION

4.1 Boolean Functions and Binary Decision Trees

Boolean function:
f1(A, B) = ¬A ∧ B

The truth table for this Boolean function is:

A B ¬A f1
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Start by choosing A as the root node. This gives us the binary decision tree as in Figure 2. On the
diagram you can see the mapping between specific parts of the truth table and the binary decision
tree. Each leaf node corresponds to one row in the truth table, while the level above the leaf nodes
correspond to two rows in the truth table, etc. By merging leaf nodes with the same value the tree
can be simplified, as in Figure 3.

Using B as the start node results in a different binary decision tree. In this particular case the tree
turns out to be as simple as the first. This is not the case for all decision trees.

The binary decision tree starting with B is shown in Figure 4.
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Figure 2: A binary decision tree for f1 starting with A.
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0 1
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Figure 3: A simplified binary decision tree for f1(A, B) = ¬A ∧ B starting with A.

Decision lists

Rivest wrote a paper on how to create decision lists from a Boolean function. The paper goes into
some depth in how to do this.

Nilsson’s book summarises the concept on p.22.

You can think of a decision list as a binary decision tree where each node divides the data set
into two so that one branch has a binary value ((0, 1) or {T , F} as output, and the other branch
leads leads to further subdivision of the dataset. By writing a Boolean function in a DNF form, this
becomes reasonably obvious. Another method that works well is to draw a Karnaugh diagram of the
function and reduce the function through the diagram using the same process that would be used to
create a DNF form.
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Figure 4: A binary decision tree for f1 starting with B.

4.2 The ID3 algorithm

The ID3 algorithm can be described by the following pseudocode:

Require: ID3( node, instances, targets values, attributes )
Root← node
V← {instances}
T← {target values}
A← {attributes}
if all vi ∈ V = ⊕ then return Root with label ⊕
end if
if all vi ∈ V = 	 then return Root with label 	
end if
if A = ∅ then return single node tree Root with label = majority value of t in A
else

A← the attribute that best classifies instances in subset
Root = A
while vi ∈ A do

add new branch where A = vi

V(vi)← subset of instances of A that have value vi

if V(vi) ∈ ∅ then
add leaf node with label = majority value of T in A

else
add subtree ID3( node, V(vi), T, A)

end if
end while

end if
return Root

Constructing a decision tree is a recursive process to decide which attribute to use at each node of
the decision tree. We want to choose the attribute that is the “best” at classifying the instances in
the data set. “Best” here is a quantitative measure (a number). One such measure is a statistical
measure called Information Gain. This determines how well a given attribute separates the data set
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as measured against the target classification.

ID3 uses the attribute with the highest Information Gain as the next node in constructing the tree.
The ID3 algorithm is a recursive algorithm that constructs sub-trees for attribute values of each
node, using the sub-sets of the data matching the attribute value of the sub-tree.

Attribute X with
highest information

gain

Attribute Y with
highest information

gain, given X=A

Attribute Z with
highest information

gain, given X=C

decision
1

decision
3

decision
5

decision
4

decision
2

attribute

value X=A

attribute

value X=C

attribute

value X=B

attribute

values
X=A, Y=D

attribute

values
X=A, Y=E

attribute

values
X=A, Z=F

attribute

values
X=C Y=G

Figure 5: Decision tree showing how nodes are selected in the ID3 algorithm

Figure 5 shows a decision tree with labels indicating how ID3 selects nodes in the construction of
the tree.

To understand Information Gain we need to first look at the concept of Entropy.

Entropy

Entropy is an important concept in thermodynamics. Claude Shannon saw that the concept could
be used to describe how much information there is in the outcome of a random discrete variable
(such as determining if a coin will land heads up or not, or to make sure that communication over
a network does not lose information). We can use the concept to measure the “usefulness” of a
variable in terms of its information content. This idea forms the core of the decision tree construction
process in ID3.

Given a discrete random variable X , which takes values in the alphabet X and is distributed
according to p : X → [0, 1]:

H(X ) := −
∑
x∈X

p(x) log p(x) = E[− log p(X )]
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Figure 6: Entropy of a single variable

where the sum is calculated over all possible alphabet values X . The base of the log matches the
distribution of p. For example log2 is used when the target values in the data is binary (yes/no or
T/F).

Figure 6 shows the Entropy for a single variable. Here you can see that Entropy is always positive
and can never be larger than 1.

Information Gain

Entropy can be viewed as a measure of the impurity of a collection of instances (a data set). In order
to construct a decision tree we want to repeatedly sub-divide our data set in such a way that we
create the largest reduction in entropy with each sub-division. The Information Gain of an attribute
A relative to a dataset S is defined as:

Gain(S, A) ≡ Entropy(S)−
∑

v∈Values(A)

|Sv |
|S|

Entropy(Sv )

where Values(A) is the set of all possible values attribute A can have, |Sv | is the subset of S where
A has the values v .

ID3 uses Information Gain to find the attribute that splits the dataset in such a way that we have
the highest reduction in entropy, or, as calculated above the highest Information Gain. The worked
example in Subsection 4.3 below will illustrate this in more detail.
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4.3 Worked example

We will use the data set in Table 1 to work through an example of the ID3 algorithm.

Table 1: A set of object, their attributes and classes (positive or negative)

Colour Form Hollow Transparent Class

RED cube yes yes ⊕
BLUE sphere no yes 	
GREEN pyramid no yes 	
RED sphere no no 	
GREEN pyramid yes no ⊕
GREEN cube no no 	
BLUE cube yes no 	
BLUE pyramid yes yes ⊕
RED cube yes no 	
BLUE pyramid no no 	
GREEN cube no yes ⊕
RED pyramid yes no ⊕
GREEN cube yes no 	
GREEN sphere no yes 	

First, we calculate the Entropy for the entire data set. We do this as a baseline against which
to compare which attribute will become our root note. This is in turn is done by calculating the
Information Gain for each attribute.

This is a binary classification problem. There are 14 instances, of which 5 result in Class = ⊕ and 9
gives Class = 	. In other words:

Entropy(S) ≡ Entropy([5⊕, 9	])

There are four attributes, which we can shorten to (C, F , H, T ) whose combination of values
determine the value of the target attribute, Class.

Calculate the Entropy of the data set:

Entropy(S) ≡
c∑

i=1

−pi log2(pi)

= −p⊕ log2(p⊕)− p	 log2(p	)
= −5/14 log2(5/14)− 9/14 log2(9/14)
= (−0.3571×−1.4854) + (−0.6429×−0.6374)
= 0.9403
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Attribute C can take on three values (shortened here):

Values(C) = R, G, B
SC = [5⊕, 9	]

SC=R ← [2⊕, 2	]
SC=G ← [2⊕, 4	]
SC=B ← [1⊕, 3	]

Calculate the Entropy values of the three subsets of the data associated with the values of the
attribute C:

Entropy(SC=R) = −2/4 log2(2/4)− 2/4 log2(2/4)
= 1.0000

Entropy(SC=G) = −2/6 log2(2/6)− 4/6 log2(4/6)
= 0.9183

Entropy(SC=B) = −1/4 log2(1/4)− 3/4 log2(3/4)
= 0.8112

Calculate the Information Gain for attribute C:

Gain(S, C) = Entropy(S)−
∑

v∈{R,G,B}

|Sv |
|S|

Entropy(Sv )

= Entropy(S)− 4/14 Entropy(SC=R)− 6/14 Entropy(SC=G)− 4/14 Entropy(SC=B)
= 0.9403− 4/14× 1.0000− 6/14× 0.9183− 4/14× 0.8112
= 0.0292

Repeat these calculations for the other three attributes as well. We now get all the Information Gain
values:

Gain(S, C) = 0.0292
Gain(S, F) = 0.2000
Gain(S, H) = 0.1518
Gain(S, T) = 0.0481

The attribute with the highest Information Gain causes the highest reduction in entropy. This is the
attribute Form with Gain(S, F) = 0.2000, which then becomes the root node of the decision tree, as
shown in Figure 7.

The ID3 algorithm now recurses over the subsets of the data associated with the three branches of
the root node of the decision tree.
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Form
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Figure 7: Decision tree after the first set of calculations

Table 2: Subset of the data with Form=cube

Colour Form Hollow Transparent Class

RED cube yes yes ⊕
GREEN cube no no 	
BLUE cube yes no 	
RED cube yes no 	
GREEN cube no yes ⊕
GREEN cube yes no 	

In Table 2 are 6 instances, of which 2 result in Class = ⊕ and 4 gives Class = 	. Therefore:

Entropy(SF=c) ≡ Entropy([2⊕, 4	])

Calculate the Entropy of this sub-set of the data:

Entropy(SF=c) ≡
c∑

i=1

−pi log2(pi)

= −p⊕ log2(p⊕)− p	 log2(p	)
= −2/6 log2(2/6)− 4/6 log2(4/6)
= (−0.3333×−1.5850) + (−0.6667×−0.5850)
= 0.9183

Calculate the Entropy values of the three subsets of the data associated with the values of the
attribute C:

Entropy(SF=c,C=R) = −1/2 log2(1/2)− 1/2 log2(1/2)
= 1.0000

Entropy(SF=c,C=G) = −1/3 log2(1/3)− 2/3 log2(2/3)
= 0.9183

Entropy(SF=c,C=B) = −0/1 log2(0/1)− 1/1 log2(1/1)
= 0.0000
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Table 3: Subset of the data with Form=sphere

Colour Form Hollow Transparent Class

BLUE sphere no yes 	
RED sphere no no 	
GREEN sphere no yes 	

Table 4: Subset of the data with Form=pyramid

Colour Form Hollow Transparent Class

GREEN pyramid no yes 	
GREEN pyramid yes no ⊕
BLUE pyramid yes yes ⊕
BLUE pyramid no no 	
RED pyramid yes no ⊕

Calculate the Information Gain for attribute C, where Form=cube:

Gain(S, CF=c) = Entropy(S)−
∑

v∈{R,G,B}

|Sv |
|S|

Entropy(Sv )

= Entropy(S)− 2/6 Entropy(SC=R)− 3/6 Entropy(SC=G)− 1/6 Entropy(SC=B)
= 0.9183− 2/6× 1.0000− 3/6× 0.9183− 1/6× 0.0000
= 0.1258

We do similar calculations for the rest of the subset to get:

Gain(S, CF=c) = 0.1258
Gain(S, HF=c) = 0.0441
Gain(S, TF=c) = 0.9183

The attribute with the highest Information Gain is Transparent, which then becomes the next node
in the decision tree, under the branch with the value Form=cube. The data in Table 3 show that
all the instances have output 	, which means that we can define a leaf node under Form=sphere.
The result of these calculations gives the decision tree as in Figure 8.

In Table 4, where Form=pyramid, are 5 instances, of which 3 result in Class = ⊕ and 2 gives
Class = 	. Therefore:

Entropy(SF=p) ≡ Entropy([3⊕, 2	])

We do the same calculations are above to get:

Gain(S, CF=c) = 0.9710
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Figure 8: Decision tree after the second set of calculations and the observation for Form=sphere

and

Gain(S, CF=p) = 0.1710
Gain(S, HF=p) = 0.9710
Gain(S, TF=p) = 0.9710

We now see an interesting phenomenon. The highest Information Gain values are the same for two
possible branches. We can choose either, as they have the same effect in reducing Entropy. We
have already used Transparent in another branch, so choosing Hollow will result in a simpler tree
(Occam’s razor) to get the decision tree as in Figure 9.

Form

-

cube pyramidsphere

Transparent

yes

? ?

no

Hollow

yes

? ?

no

Figure 9: Decision tree after the 4th set of calculations

13



We now have four branches of the tree to investigate, and possibly repeat the calculations. These
branches correspond to sub-sets of the data. Tables 5 and 6 are the subsets under the branches of
Transparent.

Table 5: Subset of the data with Form=cube and Transparent=yes

Colour Form Hollow Transparent Class

RED cube yes yes ⊕
GREEN cube no yes ⊕

Table 6: Subset of the data with Form=cube and Transparent=no

Colour Form Hollow Transparent Class

GREEN cube no no 	
BLUE cube yes no 	
RED cube yes no 	
GREEN cube yes no 	

In both of these we see that there is only one output class in each. This means that we have two
more leaf nodes, as in Figure 10.

Form

-

cube pyramidsphere

Transparent

yes

+ -

no

Hollow

yes

? ?

no

Figure 10: Decision tree after the 5th set of observations

We are now left with two more subsets to investigate - those for the branches of Hollow. Tables 7
and 8 show these sub-sets.

Again, we observe a similar phenomenon as with the previous two subsets, namely that there is
only a single class in each. This means that we have our final two leaf nodes, as in Figure 11.
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Table 7: Subset of the data with Form=pyramid and Hollow=yes

Colour Form Hollow Transparent Class

GREEN pyramid yes no ⊕
BLUE pyramid yes yes ⊕
RED pyramid yes no ⊕

Table 8: Subset of the data with Form=pyramid and Hollow=no

Colour Form Hollow Transparent Class

GREEN pyramid no yes 	
BLUE pyramid no no 	

Form

-

cube pyramidsphere

Transparent

yes

+ -

no

Hollow

yes

+ -

no

Figure 11: Decision tree after the final set of observations

5 ACTIVITIES

5.1 TASK 1 - STUDY THE MATERIAL

Find and read all the online material shown earlier in this document. Study the relevant concepts
carefully and thoroughly.

5.2 TASK 2 - OTHER DECISION TREE ALGORITHMS

Find resources (some of this will be in the textbooks and material you have already studied in the
first task) on other algorithms for contructing decision trees. Some of these algorithms include ID3
(what you’ve studied here), C4.5, and CART.
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Study these algorithms so that you understand how they work, and on what kinds of data sets
they can be applied. What are the differences? What are the advantages and shortcomings of
these algorithms. What would you do with missing or incorrect data? How would you handle
non-categorical or continuous data? Can you use other costs functions? Can you use different cost
functions in different parts of the data set? Why and when would you do so?

5.3 TASK 3

Find resources on more advanced extentions of decision-tree learning. Look specifically at ensemble
methods, such as bagging an boosting, and their further extension into random forests.

© UNISA 2024
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